Skip to main content

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 55))

  • 140 Accesses

Abstract

The numerical evaluation of derivatives involved in the convective terms is discussed in the following section. The results obtained by using the finite difference schemes (both upwind and central approximations) and the boundary integral equations are compared in the Hagen-Poiseuille flow problem and the square cavity flow problem [1]. Next, the effect of the self-adaptive coordinate transformation technique is examined for the case of quasi-singular boundary integrations [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitagawa, K., Brebbia, C.A., Wrobel, L.C. and Tanaka, M., Boundary Element Analysis of Viscous Flow by Penalty Function Formulation, Engineering Analysis, Vol. 3, No. 4, pp. 194–200, (1986).

    Article  Google Scholar 

  2. Kitagawa, K., Brebbia, C.A., Wrobel, L.C. and Tanaka, M., A Boundary Element Analysis of Natural Convection Problems, Proc. of the 4th Japan National Symposium on BEM (Kobayashi, S. ed.), pp. 161–166, (1987), in Japanese.

    Google Scholar 

  3. Kitagawa, K., Wrobel, L.C., Brebbía, C.A. and Tanaka, M., Modelling Thermal Transport Problems Using the Boundary Element Method, Proceedings of the International Conference on Development and Application of Computer Techniques to Environmental Studies, pp. 715–731, C.M. Publications, (1986).

    Google Scholar 

  4. Kitagawa, K., Wrobel, L.C., Brebbia, C.A. and Tanaka, M., A Boundary Element Formulation for Natural Convection Problems, Int. J. for Numer. Meth. in Fluids, Vol. 8, pp. 139–149, (1988).

    Google Scholar 

  5. Kitagawa, K., Brebbia, C.A., Wrobel, L.C. and Tanaka, M., Viscous Flow Analysis Including Thernal Convection, Proc. of the 9th BEM Conf. on BEM in Engineering (Brebbía, C.A. et al eds.), pp. 459–476, C.M. Publications, (1987).

    Google Scholar 

  6. Tanaka, M., Kitagawa, K., Brebbia, C.A. and Wrobel, L.C., A Boundary Element Investigation of Natural Convection Problems, Proc. of the 7th Int. Conf. on Computational Methods in Water Resources, C.M. Publications, Southampton, (1988).

    Google Scholar 

  7. Kitagawa, K., Brebbia, C.A., Tanaka, M. and Wrobel, L.C., A Boundary Element Analysis of Natural Convection Problems by Penalty Function Formulation, Proc. of the 10th Int. Conf. on BEM in Engineering (Brebbia, C.A. et al eds.), C.M. Publications, (1988).

    Google Scholar 

  8. Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge Univ. Press., (1967).

    Google Scholar 

  9. Thomasset, F., Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, (1981).

    Google Scholar 

  10. Burggraf, O.R., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., Vol. 24, pp. 113–151, (1966).

    Article  Google Scholar 

  11. Bercovier, M. and Engelman, M., A finite element for the numerical solution of viscous incompressible flows, J. Compy. Physics., Vol. 30, pp. 181–201, (1979).

    Article  CAS  Google Scholar 

  12. Borrel, M., Resolution des equations de Navier-Stokes par une methode delements finis, Technical note Onera no. 1977 /8, (1977).

    Google Scholar 

  13. Campion-Renson, A. and Crochet, M.J. On the stream function vorticity finite element solutions of Navier-Stokes equations, Int. J. Num. Meth. Enq., Vol. 12, pp. 1809–1818, (1978).

    Google Scholar 

  14. Hughes, T.J.R., Liu, W.K. and Brooks, A. Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation, J. Comp. Phys., Vol. 30, pp. 1–60, (1979).

    Article  Google Scholar 

  15. Telles, J.C.F., A Self-adaptive Coordinate Transformation for Efficient Numerical Evaluation of General Boundary Element Integrals, Int. J. of Num. Meth. In Engng., Vol. 24, pp. 959, (1987).

    Google Scholar 

  16. Denham, M.K. and Patrick, M.A., Laminar Flow Over a Downstream-Facing Step in a Two-Dimensional Flow Channel, Transcript of the Institute of Chemical Engineers, Vol. 52, pp. 361–367, (1974).

    Google Scholar 

  17. Hutton, A.G. and Smith, R.M., The Prediction of Laminar Flow Over a Downstream-Facing Step by the Finite Element Method, CEGB Report No. RD/B/N3660, (1979).

    Google Scholar 

  18. Davis, G.V. and Jones, I.P., Natural Convection in a Square Cavity; A Comparison Exercise, Numerical Methods in Thermal Problems. Vol. 2, (Lewis, R.W., Morgan, K. and Sherefler, B. A. eds.), pp. 552–572, (1981).

    Google Scholar 

  19. Jones, I.P. and Thomson, C.P. (eds.) Numerical Solutions for a Comparison Problem on Natural Convection in an Enclosed Cavity, AERE-R9955, HMSO, (1981).

    Google Scholar 

  20. Kuhn, T.H. and Goldstein, R.J., An Experimental and Theoretical Study of Natural Convection in the Annulus between Horizontal Concentric Cylinders, J. Fluid Mechanics, Vol. 74, pp. 695–716, (1976).

    Article  Google Scholar 

  21. Heinrich, J.C. and Zienkiewicz, 0.C., finite element modelling of steady state circulation in shallow water and Navier-Stokes equation using a penalty function approach, Univ. College of Swanseam, (1977).

    Google Scholar 

  22. Lee, R.L., Gresho, P.M. and Sani, R.L., Smoothing techniques for certain primitive variable solution of the Navier-Stokes equation, Int. J. Numer. Meth. Engng., Vol. 14, pp. 1785–1804, (1979).

    Article  Google Scholar 

  23. Hughes, T.J.R., Liu, W.K., and Brooks, A., Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulaltion, J. Comp. Phys., Vol. 30, No. 1, pp. 1–60, (1979).

    Article  Google Scholar 

  24. Oden, J.T. and Jacquotte, 0., A stable second-order accurate, finite element scheme for the analysis of two-dimensional incompressible viscous flow, Proc. of 4th Int. Symp. on FEM in Flow Problems (Kawai, T. ed.), pp. 19–25, Tokyo Univ. Press, (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Kitagawa, K. (1990). Computational Results. In: Boundary Element Analysis of Viscous Flow. Lecture Notes in Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84029-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84029-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51930-0

  • Online ISBN: 978-3-642-84029-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics