Skip to main content

Organization of Rapid Analysis of Lipids in Many Individual Plants

  • Chapter
Essential Oils and Waxes

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 12))

Abstract

There is considerable interest in changing the composition of oilseed plants through plant breeding and genetic engineering (Greiner 1990). This may involve increasing or decreasing the total lipid in the seed or the composition of the lipid. Modern plant breeding is largely empirical and produces large numbers of plants whose oilseed composition must be evaluated. For example, two plants may be crossed and give rise to many offspring that are a genetic mixture of the two parents (Graef et al. 1988). Each of the offspring may differ genetically, and those with interesting oilseed compositions must be identified. Or, a batch of seed may be treated with a chemical or physical agent to induce mutations (Hammond and Fehr 1985). The surviving seed will give rise to plants that may have random mutations and must be evaluated to identify those with interesting compositions. In these situations plant breeders turn to those skilled in oilseed analysis, and close cooperation between breeder and analyst is needed for success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackman RG, Sipos JC (1964) Application of specific response factors in gas chromatographic analysis of methyl esters of fatty acids with flame ionization detectors. J Am Oil Chem Soc 41: 377–378

    Article  CAS  Google Scholar 

  • Aitzmueller K (1982) Recent progress in the high performance liquid chromatography of lipids. Progr Lipid Res 23: 171–193

    Article  Google Scholar 

  • Aitzmueller K (1984a) HPLC of phospholipids. Part I. General considerations. Fette Seifen Anstrich-mittel 86: 318–322

    Article  Google Scholar 

  • Aitzmueller K (1984b) HPLC and phospholipids. Part II. Determination of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) in defatted soybean lecithin. Fette Seifen Anstrichmittel 86: 322–325

    Article  Google Scholar 

  • Alexander DE, Silvela L, Collins FI, Rodgers RC (1967) Analysis of oil content of maize by wide-line NMR. J Am Oil Chem Soc 44: 555–558

    Article  PubMed  CAS  Google Scholar 

  • Bannon CD, Craske JD, Hilliker AE (1986) Gas liquid chromatography analysis of the fatty acid composition of fats and oils: a total system for high accuracy. J Am Oil Chem Soc 63: 105–110

    Article  CAS  Google Scholar 

  • Bubeck DM, Duvick DN, Fehr WR, Hammond EG (1990) Linolenic acid content of soybean seed estimated with 2-thiobarbituric acids test. Crop Sci 30: 950–952

    Article  CAS  Google Scholar 

  • Bubeck DM, Fehr WR, Hammond EG (1991) Inheritance of palmitic and stearic acid mutants of soybean. Crop Sci (in press)

    Google Scholar 

  • Christie WW (1986) Separation of lipid classes by high-performance liquid chromatography with the “mass detector.” J Chromatogr 361: 396–399

    PubMed  CAS  Google Scholar 

  • Churacek J (1970) Einige neue Reagenzien zur chromatographischen Identifizierung von Säuren, Alkoholen and AmMen. J Chromatogr 48: 241–249

    Article  CAS  Google Scholar 

  • Churacek J, Kopecny F, Kulhay M, Jurecek M (1965) Papierchromatographie der Carbonsäuren. V. Identifizierung der Fettsäuren Ci bis C16 als N,N-Dimethyl-p-aminobenzolazophenacylester. Z Anal Chem 208: 102–116

    Article  CAS  Google Scholar 

  • Collins FI, Alexander DE, Rodgers KC, Silvela L (1967) Analysis of oil content of soybeans by wide-line NMR. J Am Oil Chem Soc 44: 708–710

    Article  PubMed  CAS  Google Scholar 

  • Conway TF, Earle FR (1963) Nuclear magnetic resonance for determining oil content of seeds. J Am Oil Chem Soc 40: 265–268

    Article  CAS  Google Scholar 

  • Craske JD, Bannon CD (1987) Analysis of fatty acid methyl esters with high accuracy and reliability. V. Validation of theoretical relative response factors of unsaturated esters in the flame ionization detector. J Am Oil Chem Soc 64: 1413–1417

    Article  CAS  Google Scholar 

  • Dahmer ML, Fleming PD, Collins GB, Hildebrand DF (1989) A rapid screening technique for determining the lipid composition of soybean seed. J Am Oil Chem Soc 66: 543–548

    Article  CAS  Google Scholar 

  • Davies CS, Nielsen NC (1986) Genetic analysis of a null-allele for lipoxygenase-2 in soybean. Crop Sci 26: 460–463

    Article  Google Scholar 

  • Davies CS, Nielsen SS, Nielsen NC (1987) Flavor improvement of soybean preparations by genetic removal of lipoxygenase-2. J Am Oil Chem Soc 64: 1428–1433

    Article  CAS  Google Scholar 

  • El-Hamdy AH, Perkins EG (1981a) High performance reverse phase chromatography of natural triglyceride mixtures: carbon number separation. J Am Oil Chem Soc 58: 49–53

    Article  CAS  Google Scholar 

  • El-Hamdy AH, Perkins EG (1981b) High performance reverse phase chromatography of natural triglyceride mixtures: critical pair separation. J Am Oil Chem Soc 58: 867–873

    Article  CAS  Google Scholar 

  • Fatemi SH, Hammond EG (1977a) Glyceride structure variation in soybean varieties. I. Stereospecific analysis. Lipids 12: 1032–1036

    Article  CAS  Google Scholar 

  • Fatemi SH, Hammond EG (1977b) Glyceride structure variation in soybean varieties. II. Silver ion chromatographic analysis. Lipids 12: 1037–1042

    Article  CAS  Google Scholar 

  • Fehr WR, Welke GA, Hammond EG, Duvick DN, Cianzio SR (1991) Inheritance of reduced palmitic acid content in the seed oil of soybean. Crop Sci (in press)

    Google Scholar 

  • Frankel EN, Warner K, Klein BP (1988) Flavor and oxidative stability of oil processed from null lipoxygenase-1 soybeans. J Am Oil Chem Soc 65: 147–150

    Article  CAS  Google Scholar 

  • Frey KJ, Hammond EG (1975) Genetics, characteristics and utilization of oil in caryopses of oat species. J Am Oil Chem Soc 52: 358–362

    Article  CAS  Google Scholar 

  • Frost DJ, Bus J, Keunig R, Sies I (1975) PMR analysis of unsaturated triglycerides using shift reagents. Chem Phys Lipids 14: 189–192

    Article  PubMed  CAS  Google Scholar 

  • Graef GL, Fehr WR, Miller LA, Hammond EG, Cianzio SR (1988) Inheritance of fatty acid composition in a soybean mutant with low linolenic acid. Crop Sci 28: 55–58

    Article  CAS  Google Scholar 

  • Greiner CA (ed) (1990) Economic implications of modified soybean traits. Iowa State University, Ames, Iowa

    Google Scholar 

  • Hammond EG, Fehr WR (1985) Progress in breeding for low-linolenic acid soybean oil. In: Rattray JBM, Ratledge C (eds) Biotechnology for the oils and fats industry. American Oil Chemists’ Society, Champaign, IL, pp 89–96

    Google Scholar 

  • Hartwig RA, Hurburgh CR Jr (1990) Near-infrared reflectance measurement of moisture, protein, and oil content of ground crambe seed. J Am Oil Chem Soc 67: 435–437

    Article  CAS  Google Scholar 

  • Hawkins SE, Fehr WR, Hammond EG (1983) Resource allocation in breeding for fatty acid composition in soybean oil. Crop Sci 23: 900–904

    Article  Google Scholar 

  • Hildebrand DF, Hymowitz T (1982) Inheritance of lipoxygenasc-1 activity in soybean seeds. Crop Sci 22: 851–853

    Article  CAS  Google Scholar 

  • Hurburgh CR Jr, Paynter LN, Schmitt SG (1987) Quality characteristics of midwestern soybeans. Appl Eng Agric 3: 159–165

    Google Scholar 

  • Kaufmann HP, Schnurbusch H (1958) Die Papier-Chromatographie auf dem Fettgebiet. XXIX. Die pc-Analyse von Fettsäure-Gemischen mit Hilfe des Kupfer-Quecksilber-Verfahrens. Fette Seifen Anstrichmittel 60: 1046–1050

    Article  CAS  Google Scholar 

  • Kitamura K, Davies CS, Kaizuma N, Nielsen NC (1983) Genetic analysis of a null-allele for lipoxygenase-3 in soybean seeds. Crop Sci 23: 924–927

    Article  CAS  Google Scholar 

  • Litchfield C (1972) Analysis of triglycerides, Academic Press, New York

    Google Scholar 

  • Maerker G, Unruh J (1986) Cholesterol oxides. I. Isolation and determination of some cholesterol oxidation products. J Am Oil Chem Soc 63: 767–771

    Google Scholar 

  • McGregor DI (1974) A rapid and sensitive spot test for linolenic acid levels in rape seed. Can J Plant Sci 54: 211–213

    Article  CAS  Google Scholar 

  • Natale N (1977) A mass spectrometric survey of some biologically important lipids. Lipids 12: 847–856

    Article  PubMed  CAS  Google Scholar 

  • Ng S (1985) Analysis of positional distribution of fatty acids in palm oil by C13 NMR spectroscopy. Lipids 20: 778–782

    Article  CAS  Google Scholar 

  • Ohlson R, Podlaha O, Toregard B (1975) Stereospecific analysis of some Cruciferae species. Lipids 10: 732–735

    Article  CAS  Google Scholar 

  • Ottenstein DM, Witting LA, Silvis PH, Hometchko DJ, Pelick N (1984) Column types for the chromatographic analysis of oleochemicals. J Am Oil Chem Soc 61: 390–394

    Article  CAS  Google Scholar 

  • Pan WP, Hammond EG (1983) Stereospecific analysis of triglycerides of Glycine max, Glycine soja, Avena sativa, Avena sterilis strains. Lipids 18: 882–888

    Article  PubMed  CAS  Google Scholar 

  • Panford JA, deMan JM (1990) Determination of oil content of seeds by NIR: influence of fatty acid composition on wavelength selection. J Am Oil Chem Soc 67: 473–486

    Article  CAS  Google Scholar 

  • Panford JA, Williams PC, deMan JM (1988) Analysis of oilseeds for protein, oil, fiber and moisture by near-infrared reflectance spectroscopy. J Am Oil Chem Soc 65: 1627–1634

    Article  CAS  Google Scholar 

  • Rennie BD, Tanner JW (1989) Fatty acid composition of oil from soybean seeds grown at extreme temperatures. J Am Oil Chem Soc 66: 1622–1624

    Article  CAS  Google Scholar 

  • Ritchie AS, Jee MH (1985) High performance chromatographic technique for the separation of lipid classes. J Chromatogr 329: 273–280

    Article  CAS  Google Scholar 

  • Robertson A, Morrison WH (1979) Analysis of oil content of sunflower seed by wide line NMR. J Am Oil Chem Soc 56: 961–964

    Article  CAS  Google Scholar 

  • Rutar V, Kovac M, Lahajnar G (1989) Nondestructive study of lipids in single fir seeds using nuclear magnetic resonance and magic angle sample spinning. J Am Oil Chem Soc 66: 961–965

    Article  CAS  Google Scholar 

  • Weber EJ (1987) Carotenoids and tocols of corn germ determined by HPLC. J Am Oil Chem Soc 64: 1129–1134

    Article  CAS  Google Scholar 

  • Williams P, Norris K (eds) (1987) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, St Paul, Minnesota

    Google Scholar 

  • Wollenberg KF (1990) Quantitative high resolutin C13 nuclear magnetic resonance of the olefinic and carbonyl carbons of edible vegetable oils. J Am Oil Chem s: 487: 494

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hammond, E.G. (1991). Organization of Rapid Analysis of Lipids in Many Individual Plants. In: Linskens, H.F., Jackson, J.F. (eds) Essential Oils and Waxes. Modern Methods of Plant Analysis, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84023-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84023-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84025-8

  • Online ISBN: 978-3-642-84023-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics