Skip to main content

Evaluation of Antimicrobial Activity of Essential (Volatile) Oils

  • Chapter
Essential Oils and Waxes

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 12))

Abstract

Higher plants have been exploited as a source of biologically active compounds since antiquity. In particular, the ability to inhibit the growth of spoilage and food poisoning bacteria, human and animal pathogens and a number of filamentous fungi has been of immense importance to man over the centuries (Zaika 1989; Deans and Svoboda 1990a; Deans et al. 1990). It is worth noting that even with today’s battery of synthetic and semi-synthetic antibiotics, over 25% of pharmaceutical preparations in the West contain at least one component originating from plant sources: in the East this percentage is far higher. That some of these plant antimicrobials also possess antioxidant properties is a welcome bonus in the quest to preserve the food reserves of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aird ELH, Hamill JD, Rhodes MJC (1988) Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 15: 47–57

    Article  Google Scholar 

  • Aktug SE, Karapinar M (1986) Sensitivity of some common food-poisoning bacteria to thyme, mint and bay leaves. Int J Food Microbiol 3: 349–354

    Article  Google Scholar 

  • D’Amato F (1985) Cytogenetics of plant cell and tissue cultures and their regenerates. CRC Crit Rev Plant Sci 3: 73–112

    Article  Google Scholar 

  • Ambros PF, Matzke AJM, Matzke MA (1986) Localisation of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridisation. EMBO J 5: 2037–2077

    Google Scholar 

  • Azzouz MA, Bullerman LB (1982) Comparative antimycotic effects of selected herbs, spices, plant components and commercial antifungal agents. J Food Prot 45: 1298–1301

    Google Scholar 

  • Bahk J, Marth EH (1983) Growth and synthesis of aflatoxin by Aspergillus parasiticus in the presence of ginseng products. J Food Prot 46: 210–215

    CAS  Google Scholar 

  • Balza F, Jamieson L, Towers GHN (1985) Chemical constituents of the anal parts of Artemisia dracunculus. J Natural Prod 48: 339–340

    Article  CAS  Google Scholar 

  • Benjilali B, Tantaoui-Elaraki A, Ayadi A, Ihlal M (1984) Method to study antimicrobial effects of essential oils: application to the antifungal activity of six Moroccan essences. J Food Prot 47: 748–752

    Google Scholar 

  • Beuchat LR (1976) Sensitivity of Vibrio parahaemolyticus to spices and organic acids. J Food Sci 41: 899–902

    Article  CAS  Google Scholar 

  • Boonchird C, Flegel T (1982) In vitro antifungal activity of eugenol and vanillin against Candida albicans and Cryptococcus neoformans. Can J Microbiol 28: 1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RL, Shepherd AJ (1981) Inhibition of Aspergillus parasiticus by thymol. J Food Sci 46: 976–977

    Article  CAS  Google Scholar 

  • Connor DE, Beuchat LR (1984) Effects of essential oils from plants on growth of food spoilage yeasts. J Food Sci 49: 429–434

    Article  Google Scholar 

  • Dabbah R, Edwards VM, Moats WA (1970) Antimicrobial action of some citrus fruit oils on selected food-borne bacteria. Appl Microbiol 19: 27–31

    PubMed  CAS  Google Scholar 

  • Deans SG, Ritchie GA (1987) Antibacterial activity of plant essential oils. Int J Food Microbiol 5: 165–180

    Article  Google Scholar 

  • Deans SG, Svoboda KP (1988) Antibacterial activity of French tarragon (Artemisia dracunculus L.) essential oil and its constituents during ontogeny. J Hortic Sci 63: 135–140

    Google Scholar 

  • Deans SG, Svoboda KP (1989) Antibacterial activity of summer savory (Satureja hortensis) essential oil and its constituents. J Hortic Sci 64: 205–211

    CAS  Google Scholar 

  • Deans SG, Svoboda KP (1990a) Biotechnology and hioactivity of culinary and medicinal plants. AgBiotech News Info 2: 211–216

    Google Scholar 

  • Deans SG, Svoboda KP (1990b) The antimicrobial properties of marjoram (Origanum majorana L.) volatile oil. Flavour Fragnance J 5: 187–190

    Article  Google Scholar 

  • Deans SG, Gull K, Smith JE (1980) Ultrastructural changes during microcycle conidiation of Aspergillus niger. Trans Br Mycol Soc 74: 493–502

    Article  Google Scholar 

  • Deans SG, Svoboda KP, Gundidza M, Brechany EY (1990) Essential oil profiles of several temperate and tropical aromatic plants: their antimicrobial and antioxidant activities. Acta Horticulturae (in press)

    Google Scholar 

  • Deus-Neumann B, Zenk MH (1984) Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med 50: 427–431

    Article  PubMed  CAS  Google Scholar 

  • Dikshit A, Husain A (1984) Antifungal action of some essential oils against animal pathogens. Fitoterapia 55: 171–176

    CAS  Google Scholar 

  • Evans JS, Pattison E, Morris P (1986) Antimicrobial agents from plant cell cultures. In: Morris P, Scragg AH, Stafford A, Fowler MW (eds) Secondary metabolism in plant cell cultures. Cambridge, Cambridge Univ Press, pp 47–53

    Google Scholar 

  • Farag RS, Daw ZY, Abo-Raya SH (1989) Influence of some spice essential oils on Aspergillus parasiticus growth and production of aflatoxin in a synthetic medium. J Food Sci 54: 74–77

    Article  CAS  Google Scholar 

  • Fliermans CB (1973) Inhibition of Histoplasma capsulatum by garlic. Appl Mycopathol Mycol 50: 227–231

    Article  CAS  Google Scholar 

  • Fromtling RA, Bulmer GS (1978) In vitro effect of aqueous extract of garlic (Allium sativum) on the growth and viability of Cryptococcus neoformans. Mycologia 70: 397–405

    Article  PubMed  CAS  Google Scholar 

  • Garg SC, Dengre SL (1988) Antifungal activity of the essential oil of Mytus communisvar. microphylla. Herba Hung 27: 123–124

    Google Scholar 

  • Ghannoum MA (1988) Studies on the anticandidal mode of action of Allium sativum (garlic). J Gen Microbiol 134: 2917–2924

    PubMed  CAS  Google Scholar 

  • Graham HD, Graham EJF (1987) Inhibition of Aspergillus parasiticus growth and toxin production by garlic. J Food Safety 8: 101–108

    Article  Google Scholar 

  • Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5: 111–114

    Article  CAS  Google Scholar 

  • Hethelyi E, Tetenyi P, Kaposi P, Danos B, Kernoczi Z, Buki G, Koczka I (1988) GC-MS investigation of antimicrobial and repellant compounds. Herba Hung 27: 89–94

    CAS  Google Scholar 

  • Huffmann GA, White FF, Gordon MP, Nester EW (1984) Hairy root inducing plasmid: physical map and homology to tumor inducing plasmids. J Bactcriol 157: 269–276

    Google Scholar 

  • Huhtanen CN (1980) Inhibition of Clostridium bontlinum by spice extracts and aliphatic alcohols. J Food Prot 43: 195–196

    CAS  Google Scholar 

  • Ieven M, Vlietinck AJ, Van den Berghe DA, Totte J (1982) Plant antiviral agents. III Isolation of alkaloids from Clivia miniata Regel ( Amaryllidaceae ). J Nat Prod 45: 564–573

    Article  PubMed  CAS  Google Scholar 

  • Janssen AM, Scheffer JJC, Baerheim Svendsen A, Aynehchi Y (1985) Composition and antimicrobial activity of the essential oil of Ducrosia anethifolia. In: Baerheim Svendsen A, Scheffer JJC (eds) Essential oils and aromatic plants. Martinus Nijhoff, Dordrecht, pp 213–216

    Google Scholar 

  • Janssen AM, Scheffer JJJ, Parhan-Van Atten AW, Baerheim Svendsen A (1988) Screening of some essential oils for their activities on dermatophytes. Pharm Weekhl (Sci) 10: 277–280

    CAS  Google Scholar 

  • Karapinar M (1985) The effects of citrus oils and some spices on growth and aflatoxin production by Aspergillus parasiticus NRRL 2999. Int J Food Microbiol 2: 239–245

    Article  CAS  Google Scholar 

  • Kaul TN, Middleton E, Ogra PL (1985) Antiviral effects of flavonoids on human viruses. J Med Virol 15: 71–79

    Article  PubMed  CAS  Google Scholar 

  • Kennedy AI, Deans SG, Svoboda KP, Gray Al, Waterman PG (1990) Comparison of the volatile oil from fermenter-grown transformed (`hairy’) roots and field-grown roots of Artemisia absinthium (wormwood). Phytochemistry (submitted)

    Google Scholar 

  • Knobloch K, Pauli A, Iberl B, Weigand H, Weis N (1989) Antibacterial and antifungal properties of essential oil components. J Essential Oil Res 1: 119–128

    CAS  Google Scholar 

  • Lawrence BM (1979) Progress in essential oils. Perfumer Flavorist 4: 53–54

    CAS  Google Scholar 

  • MacNeill JH, Dimick PS, Mast MG (1973) Use of chemical compounds and a rosemary spice extract in quality maintainance of deboned poultry meat. J Food Sci 38: 1080–1081

    Article  Google Scholar 

  • McDowell PG, Lwande W, Deans SG, Waterman PG (1988) The volatile resin exudate from the stem bark of Commiphora rostrata: potential role in plant defence. Phytochemistry 27: 2519–2521

    Article  CAS  Google Scholar 

  • Maruzzella JC, Sicurella NA (1960) Antibacterial activity of essential oil vapours. J Am Pharm Assoc 49: 692–694

    CAS  Google Scholar 

  • Nadal NGM, Montalvo AE, Seda M (1973) Antimicrobial properties of bay and other phenolic essential oils. Cosmetics Perfumery 88: 37–39

    Google Scholar 

  • Ooms G, Karp A, Burrel MM, Twell D, Roberts J (1985) Genetic modification of potato development using Ri T-DNA. Theor Appl Genet 70: 440–446

    CAS  Google Scholar 

  • Parr AJ, Hamill JD (1987) Relationship between Agrobacterium rhizogenes transformed hairy roots and intact, uninfected Nicotiana plants. Phytochemistry 26: 3241–3245

    Article  CAS  Google Scholar 

  • Pompei R, Flore O, Marcialis MA, Pania A, Loddo B (1979) Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 281: 689–690

    Article  PubMed  CAS  Google Scholar 

  • Reuveni R, Fleischer A, Putievsky E (1984) Fungistatic activity of essential oils from Ocimum basilicum chemotypes. Phytopathol Z 10: 20–22

    Article  Google Scholar 

  • Riker AJ (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41: 507–540

    Google Scholar 

  • Rhyu HY (1979) Gas chromatographic characterisation of sages of various geographic origins. J Food Sci 44: 758–762

    Article  CAS  Google Scholar 

  • Romero E, Tateo F, Debiaggi M (1989) Antiviral activity of a Rosmarintt.s officinalis L. extract. Mitt Geb Lebensmittelunters 80: 113–119

    Google Scholar 

  • Shelef LA, Naglik OA, Bogen DW (1980) Sensitivity of some common food-borne bacteria to the spices sage, rosemary and allspice. J Food Sci 45: 1042–1044

    Article  Google Scholar 

  • Shukla HS, Tripathi SC (1987) Antifungal substance in the essential oil of anise (Pimpinella anisum L.). Agric Biol Chem 51: 1991–1993

    Article  CAS  Google Scholar 

  • Stahl E, Quirin KW (1984) Extraction of natural substances with dense gases. Pharm Res 1984: 189–194

    Article  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967

    Article  PubMed  CAS  Google Scholar 

  • Tharib SM, Gnan SO, Veitch, GBA (1983) Antimicrobial activity of compounds from Artemisia campestris. J Food Prot 46: 185–187

    Google Scholar 

  • Van den Berghe DA, Ieven M, Mertens F, Vlietinck AJ, Lammens E (1978) Screening of higher plants for biological activities. Antiviral activity. Lloydia 41: 463–471

    Google Scholar 

  • Zaika LL (1989) Spices and herbs: their antimicrobial activity and its determination. J Food Sci 9: 97–118

    Google Scholar 

  • Zaika LL, Kissinger JC, Wasserman AE (1983) Inhibition of lactic acid bacteria by herbs. J Food Sci 48: 1455–1459

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deans, S.G. (1991). Evaluation of Antimicrobial Activity of Essential (Volatile) Oils. In: Linskens, H.F., Jackson, J.F. (eds) Essential Oils and Waxes. Modern Methods of Plant Analysis, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84023-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84023-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84025-8

  • Online ISBN: 978-3-642-84023-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics