Computation of Viscous Unsteady Compressible Flow About Profiles

  • K. Dortmann
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 54)


An essential aspect of aerodynamics is the time-dependent behaviour of flows. In this context the separation of boundary layers is of great importance. Depending on the similarity parameters the flow can become unstable, which often leads to selfinduced periodic flows.


Truncation Error Strouhal Number Lift Coefficient Vortex Street High Frequency Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Krause: “Review of Some Vortex Relations ”, Technical Note, Computers and Fluids, Vol. 13, pp. 513–515, 1985CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    D. L. Whitfield: “Three-Dimensional Unsteady Euler Equation Solutions Using Flux Vector Splitting ”, Notes for Computational Fluid Dynamics User’s Workshop, Tullahoma Tennessee, 1984Google Scholar
  3. [3]
    M. G. Hall: “Cell-Vertex Multigrid Schemes for Solution of the Euler Equations ”, Proceedings of Conference on Numerical Methods for Fluid Dynamics, Clarendon Press, Oxford, 1986Google Scholar
  4. [4]
    R. F. Warming, R. M. Beam: “Stability of Semi-Discrete Approximations for Hyperbolic Initial-Boundary-Value Problems II: Asymtotic Estimates ”, Computational Fluid Dynamics, G. de Vahl Davis and C. Fletcher (Editors), Elsevier Science Publishers B. V. (North-Holland), 1988Google Scholar
  5. [5]
    P. J. van der Houwen, B. P. Sommeijer: “Internal Stability of Explicit, m-Stage Runge-Kutta Methods ”, ZAMM Z. angew. Math. Mech., 60, pp. 479–485, 1980CrossRefMATHGoogle Scholar
  6. [6]
    R. Radespiel, N. Kroll: “Progress in the Development of an Efficient Finite Volume Code for the Three-Dimensional Euler Equations ”, DFVLR-FB-85–31, 1985Google Scholar
  7. [7]
    R. W. MacCormack, B. S. B.ldwin: “Numerical Method for Solving the NavierStokes Equations with Application to Shock-Boundary Layer Interactions ”, AIAA paper 75–1, 1971Google Scholar
  8. [8]
    A. Jameson, W. Schmidt, E. Turkel: “Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes ”, AIAA paper 81–1259, 1981Google Scholar
  9. [9]
    D. J. Tritton: “Physical Fluid Dynamics ”, van Nostrand Reinhold Company, New York, Cincinnati, Toronto, London, Melbourne, 1977CrossRefMATHGoogle Scholar
  10. [10]
    W.-B. Schweitzer: “Experiments on Unsteady Flows About Wing Sections ”, Proceedings of the conference on low Reynolds number airfoil aerodynamics, edited by T. J. Mueller, Notre Dame, Indiana, 1985Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • K. Dortmann
    • 1
  1. 1.Aerodynamisches InstitutRWTH AachenGFR

Personalised recommendations