Skip to main content

Ultrasonic NDE of Advanced Ceramics

  • Conference paper
Nondestructive Characterization of Materials
  • 275 Accesses

Abstract

The development of a database for the ultrasonic NDE of advanced-ceramic components is described. High frequency (≤100 MHz), high power transducer development was involved and the probes are used to examine model spherical inclusions (voids (≥20 μm), ZrO2, MgO, V2O5 and Pt inclusions (≥30 μm)) in model matrices (glass, crystallized glass and partially stabilized zirconia). Actual frequency spectra obtained from these defects as a function of defect size are compared with their calculated spectra based on scattering theory and very good agreement is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Emerson, Pratt & Whitney (Canada) Ltd. -private communication.

    Google Scholar 

  2. Bhardwai, M.C., “Principles and Methods of Ultrasonic Characterization of Materials”, Adv. Ceram. Matls. 1 (4) (1986) 311–324.

    Google Scholar 

  3. Jones, M.P., Blessing, E.V., Robbins, C.R., “Dry-Coupled Ultrasonic Elasticity Measurements of Sintered Ceramics and Their Green States”, Matls. Eval. 44 (1986) 859–862.

    CAS  Google Scholar 

  4. Kupperman, D.S. Karplus, H.B., “Ultrasonic Wave Propagation Characteristics of Green Ceramics”, Bull. Am. Ceram. Soc., 63 (1984) 1505–1509.

    CAS  Google Scholar 

  5. Sung, J., Nicholson, P.S. submitted to J. Am. Ceram. Soc.

    Google Scholar 

  6. Schuldies, J.J., Derkacs, T., “Ultrasonic NDE of Ceramic Components”, Ceramic Gas Turbine Demonstration Prog. Rev. (1978) 429–448.

    Google Scholar 

  7. Derkacs, T., Matay, I.M., Brentnall, W.D., “High Frequency Ultrasonic Evaluation of Ceramics for Gas Turbines”, J. of Eng. for Power, 100, (1978) 549–552.

    Article  CAS  Google Scholar 

  8. Marshall, D.B. and Ritter, J.E., “Reliability of Advanced Structural Ceramics and Ceramic Matrix Composites–A Review”, Bull. Am. Ceram. Soc., 66 (2) (1987) 309–317.

    CAS  Google Scholar 

  9. Evans, A.G., Kino, G.S., Khuri-Yakub, B.T., Tittmann, B.R., “Failure Prediction in Structural Ceramics”, Matls. Eval. 35 (4) (1977) 85–96.

    CAS  Google Scholar 

  10. Khuri-Yakub, B.T., Kino, G.S. and Evans, A.G, “Acoustic Surface Wave Measurements of Surface Cracks in Ceramics”, J. Am. Ceram. Soc., 63 (1–2) (1980) 65–71.

    Article  CAS  Google Scholar 

  11. Kuppermann, D.S., Pahis, L., Yuhas, D. McGraw, T.E., “Acoustic Microscopy Techniques for Structural Ceramics”, Bull. Am. Ceram. Soc., 59 (8) (1980) 814–816, 839–841.

    Google Scholar 

  12. Roth, D.J., Baaklini, G.Y., “Reliability of Scanning Laser Acoustic Microscopy for Detecting Internal Voids in Structural Ceramics”, Ad. Ceram. Matis., 1 (3) (1986) 252–258.

    CAS  Google Scholar 

  13. Tuell, A., Eibann, C., Chick, B.B., Ultrasonic Methods in Solid State Physics, pp. 161–179, Academic Press, N.Y. (1969).

    Google Scholar 

  14. O’Neil, H.T., “Theory of Focussing Radiators”, J. Acoustic Soc. Am. 63 (1978) 68–74.

    Article  Google Scholar 

  15. Tittmann, B.R., Cohen, E.R., Richardson, J.M., “Scattering of Longitudinal Waves Incident on a Spherical Cavity in a Solid”, J. Acoust. Soc. Am., 63 (1978) 68–74.

    Article  Google Scholar 

  16. Gaunard, G.C., Tanglis, E., Uberall, H., Brill, D., “Interior and Exterior Resonances in Acoustic Scattering: I-Spherical Targets”, Il Nouvo Cimento 768 (1983) 153–175.

    Article  Google Scholar 

  17. Stockman, A., Nicholson, P.S., “Ultrasonic Characterisation of Model Defects in Ceramics, Part I. Voids in Glass–Theory and Practice”, Matis. Eval., 44 (1986) 756–761.

    Google Scholar 

  18. Stockman, A:, Mathieu, P., Nicholson, P.S., “Ultrasonic Characterization of Model Defects in Ceramics. Part II–Spherical Oxide Inclusions in Glass–Theory and Practice”, Matls. Eval. 45 (1987) 736–742.

    Google Scholar 

  19. Stockman, A., Mathieu, P., Nicholson, P.S., “Ultrasonic Characterization of Model Defects in Ceramics. Part III. Spherical Inclusions in Opaque Crystallized Glass - Theory and Practice”, submitted to Matls. Eval. (1987).

    Google Scholar 

  20. Stockman, A., Nicholson, P.S., “Ultrasonic Characterization of Microspherical Inclusions in Zirconia” ASNDT/Am. Ceram. Soc. Proc. NDT Ceramics Conf., Boston, August 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicholson, P.S. (1989). Ultrasonic NDE of Advanced Ceramics. In: Höller, P., Hauk, V., Dobmann, G., Ruud, C.O., Green, R.E. (eds) Nondestructive Characterization of Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84003-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84003-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84005-0

  • Online ISBN: 978-3-642-84003-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics