Advertisement

Ultrasonic Velocity Measurements in Porous Materials

  • A. Jungman
  • L. Adler
  • G. Quentin
Conference paper

Summary

Sintered materials with connected pores filled with fluid (air or water) has been studied using ultrasonic waves. The main applications of these materials are rocks, sediments and filters. The materials used in this study are both metallic and non-metallic structures with particle sizes ranging from 15 μ to 700 μ and porosity concentration up to 40%. Wave propagation in these two phase materials has been studied by Biot [J.A.S.A. 28, 168 (1956)] who predicted the existence of a third bulk wave — a slow compressional wave.

In this work wave velocities and attenuation measurements have been carried out and related to porosity, particle size and consolidation of these composite materials. The purpose of this presentation is to report results on the ultrasonic characterization of poroelastic properties of these Biot solids.

Keywords

Compressional Wave Porous Sample Bulk Wave Ultrasonic Wave Propagation Ultrasonic Velocity Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Biot, J. Acoust. Soc. Am. 28, 168 (1956).Google Scholar
  2. 2.
    M, A. Biot, J. Acoust. Sic. Am. 28, 179 (1956).Google Scholar
  3. 3.
    J. Geerstma and D.C. Smit, Geophys. 26, 169 (1961).CrossRefGoogle Scholar
  4. 4.
    R. D. Stoll and G. M.bryan, J. Acoust. Soc. Am. 47, 1440 (1970).Google Scholar
  5. 5.
    R. D. Stoll, J. Acoust. Soc. Am. 66, 1152 (1979).Google Scholar
  6. 6.
    J. G. Berryman, J. Acoust. Am. 69, 416 (1981).CrossRefGoogle Scholar
  7. 7.
    T. J. Plona, Appl. Phys. Lett. 36, 259 (1980).Google Scholar
  8. 8.
    J. G. Berryman, Appl. Phys. Lett. 37, 382 (1980).Google Scholar
  9. 9.
    B. Hartmann and J. Jarzynski, J. Acoust. Soc. Am. 56, 1469 (1974).CrossRefGoogle Scholar
  10. 10.
    P. H. Rogers and A. L. Van Buren, J. Acoust Soc. Am. 55, 724 (1974).CrossRefGoogle Scholar
  11. 11.
    D. L. Johnson and T. J. Plona, J. Acoust. Soc. Am. 72, 556 (1932).CrossRefGoogle Scholar
  12. 12.
    T. J. Plona and K. W. Winkler, Conf. Proc., The Pennsylvania state University (1935).Google Scholar
  13. 13.
    D. L. Johnson, Appl. Phys. Lett. 37, 1065 (1980).Google Scholar
  14. 14.
    E. P. Papadakis, Phys. Acoust., IVB, W.P. Mason, ed. ( Academic, New-York, 1968 ) p. 269.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • A. Jungman
    • 1
  • L. Adler
    • 2
  • G. Quentin
    • 1
  1. 1.G.P.S. Université Paris 7ParisFrance
  2. 2.Dept. of Welding Engineering Ohio State UniversityColombusUSA

Personalised recommendations