Watershed Acidification — A Chromatographic Process

  • Stephen A. Norton

Summary

Drainage watersheds acidify from the top down. The acidification involves the stripping of base cations, Al, and Fe from various reservoirs. A front of acidification moves downstream from the head of the watershed. As base cations become depleted, they are removed from the watershed. Al and Fe, however, move progressively downstream, eluted by acid and precipitated in higher pH regions of the watershed. As they do, acid neutralizing capacity accumulates in streambeds. This capacity must be stripped by progressive acidification before the stream (and lower lakes) can become chronically acidic. The capacity of this mechanism may be sufficient to retard chronic acidification by years. The mechanism of translocation of Al and Fe and, to a lesser extent, base cations serves to damp episodic pH depressions in streams and extend the recovery from periods of low pH.

Keywords

Biomass Migration Sulfide Depression Silicate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergkvist, Bo.: 1985, Water Air Soil Poll. 31, 901CrossRefGoogle Scholar
  2. Borg, H.: 1985, Water Air Soil Poll. 30, 1007CrossRefGoogle Scholar
  3. Carignan, R.: 1985, Nature. 317, 158CrossRefGoogle Scholar
  4. Carignan, R. and Tessier, A.: 1988, Geochim. Cosmochim. Acta. 52, 1179CrossRefGoogle Scholar
  5. Chesworth, W. and Macias-Vasquez F.: 1985, Amer. Jour. Sci. 285, 128CrossRefGoogle Scholar
  6. Cosby, B. J., Hornberger, G. M., Galloway, J. N. and Wright, R. F.:1985, Water Resour. Res. 21, 51CrossRefGoogle Scholar
  7. Cronan, C. S., and Schofield, C. L.: 1979, Science. 204, 304PubMedCrossRefGoogle Scholar
  8. Cronan, C. S. and Aiken, G. R.: 1985, Geochim. Cosmochim. Acta. 49, 1697CrossRefGoogle Scholar
  9. Friedland, A. J. and Johnson, A. H.: 1985, J. Environ. Qual. 14, 332CrossRefGoogle Scholar
  10. Hall, R. J., Likens, G. E., Fiance, S. B., and Hendrey, G. R.: 1980, Ecology. 61, 976CrossRefGoogle Scholar
  11. Hall, R. J., Driscoll, C. T., and Likens. G. E.: 1987, Freshwater Biol. 18, 17CrossRefGoogle Scholar
  12. Harriman, R. and Morrison, B. R. S.: 1982, Hydrobiologia. 88, 251CrossRefGoogle Scholar
  13. Henriksen, A., Skogheim, O. K., and Rosseland, B. O.: 1984, Vatten. 40, 255Google Scholar
  14. Henriksen, A., Wathne, B. M., Rogeberg, E. J. S., Norton, S. A., and Brakke, D. F.: 1988, Water Research. 22, 1069CrossRefGoogle Scholar
  15. Hultberg, H.: 1985, Ecol. Bull. 37, 133Google Scholar
  16. Johannessen, M. and Henriksen, A.: 1978, Water Resour. Res. 14, 615CrossRefGoogle Scholar
  17. Johnson, N. M., Driscoll, C. T., Eaton, J. S., Likens, G. E., and McDowell, W.H.: 1981, Geochim. Cosmochim. Acta. 45, 1421CrossRefGoogle Scholar
  18. Katz. B. G., Bricker, O. P., and Kennedy, M. M.: 1985, Am. J. Sc. 285, 931CrossRefGoogle Scholar
  19. Leivestad, H., Hendrey, G., Muniz, I. P. and Snekvik, E.: 1976. ‘Effects of acid precipitation on freshwater organisms’, in F. H. Braekke (ed.), Impact of Acid Precipitation on Forest and Freshwater Ecosystems in Norway, The SNSF Project, Oslo, Norway, pp 86–111Google Scholar
  20. Matschullat, J., Heinrichs, H., and Schneider, J.: in review, Heavy Metals and Water Acidification - Sources and behavior of pollutants in sediments of a drinking water reservoir (Western Harz Mountains, F.R.G.): Sc. of the Total Environ.Google Scholar
  21. Miotke, F. D.: 1974, Abh. Korst-n. Hohlenkunde, Reihe A., Heftq, 9, 1Google Scholar
  22. Nodvin, S. C., Driscoll, C. T., and Likens, G. E.: 1988, Biogeochemistry. 5, 185CrossRefGoogle Scholar
  23. Norton, S. A.: 1973, Econ. Geology. 68, 353CrossRefGoogle Scholar
  24. Norton, S. A. and Henriksen A.: 1983, Vatten. 39, 346Google Scholar
  25. Norton, S. A., Henriksen, A., Wathne. B. M., and Veidel, A.: 1987, Aluminum dynamics in response to experimental additions of acid to a small Norwegian stream, in Proceedings of an international symposium on Acidification and water pathways, The Norwegian National Committee for Hydrology in cooperation with Unesco and WMO, the National Committees of Danmark, Finland and Sweden, VOL I, pp 249–257Google Scholar
  26. Norton, S. A., Kahl, J. S., Brakke, D. F., Brewer, G. F., Haines, T. A., and Nodvin, S. C.: 1988a, Sc. of the, Total Environ. 72, 183CrossRefGoogle Scholar
  27. Norton, S. A., Kahl, J. S., and Davis, R. B.: 1988b, Paleolimnological evidence for terrestrial mobilization of iron by acidic precipitation (abs.): Trace Metals in Lakes, Internat. Conf., Burlington, Ontario.Google Scholar
  28. Norton, S. A., Kahl, J. S., Henriksen, A., and Wright, R. F.: in press, ‘Buffering of pH by sediments in streams and lakes’ in Advances in Environ. Sci., Acid. Precip.,3, Springer-VerlagGoogle Scholar
  29. Reuss, J. O.: 1983, J. Environ. Qual. 12, 591CrossRefGoogle Scholar
  30. Richter, D. D., Johnson, D. W., and Todd, D. E.: 1983, J. Environ. Qual. 12, 263CrossRefGoogle Scholar
  31. Rudd, J. W. M. (ed.): 1987, Acidification of the Moose River System in the Adirondack Mountains of New York State, Biogeochemistry, 3, 296 pGoogle Scholar
  32. Schafran, G. C. and Driscoll, C. T.: 1987, Environ. Sc. Tech. 21, 988CrossRefGoogle Scholar
  33. Schiff, S. and Anderson, R. F.: 1986, Water Air Soil Poll. 31, 941CrossRefGoogle Scholar
  34. Schindler, D. W.: 1985, Water Air Soil Poll. 30, 931CrossRefGoogle Scholar
  35. Skeffington, R. A. and Brown, K. A.: 1985, Water Air Soil Poll. 31, 891CrossRefGoogle Scholar
  36. Tipping, E. and Hopwood, J.: 1988, Environ. Tech. Ltrs. 9, 703CrossRefGoogle Scholar
  37. Vesely, J., Sulcek, Z. and Majer, V.: 1985, Geol. Survey (Prague) J. 60, 9Google Scholar
  38. Wright, R. F., Lotse, E., and Semb, A.: 1988, Nature, 334, 670CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Stephen A. Norton
    • 1
  1. 1.Dept. of Geological SciencesUniv. of MaineOronoUSA

Personalised recommendations