Skip to main content

Biotechnology in Rice Improvement

  • Chapter
Rice

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 14))

Abstract

Rice (Oryza sativa L.) is the most important cereal crop being grown (144.641 million ha) with a production of over 468.275 million tons in the world (IRRI Rice Facts 1988). It is also probably the world’s most versatile crop. Rice grows at more than 3000 m elevation in the Himalayas and at sea level in the deltas of the great rivers of Asia. It feeds more than half the world’s population. About 90% of the world’s rice is grown and consumed in Asia, where it contributes about 50% of dietary energy (Juliano 1985). Rice is also a staple food in Latin America, parts of Africa, and the Middle East.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Futsuhara Y (1985) Efficient plant regeneration by somatic embryogenesis from root callus tissues of rice (Oryza saliva L.). J Plant Physiol 121: 111–118

    CAS  Google Scholar 

  • Abdullah R, Cocking EC, Thompson JA (1986) Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Bio/Technology 4: 1087–1090

    Article  Google Scholar 

  • Abdullah R, Thompson JA, Khush GS, Kaushik RP, Cocking EC (1989) Protoclonal variation in the seed progeny of plants regenerated from rice protoplasts (in press)

    Google Scholar 

  • Asselin de Beauville M (1980) Obtention d’haploïdes in vitro à partir d’ovaires non fécondes de riz, Oryza sativa L. C R Acad Sci (Paris) 296 D: 489–492

    Google Scholar 

  • Baba A, Hasezawa S, Syono K (1986) Cultivation of rice protoplasts and their transformation mediated by Agrobacterium spheroplasts. Plant Cell Physiol 27 (3): 463–471

    CAS  Google Scholar 

  • Bajaj YPS (1980a) Implications and prospects of protoplast, cell and tissue culture in rice improvement programs. In: Innovative approaches to rice breeding. IRRI, Los Banos, Philippines, pp 103–134

    Google Scholar 

  • Bajaj YPS (1980b) Induction of androgenesis in rice anthers frozen at -196°C. Cereal Res Commun 8: 365–369

    Google Scholar 

  • Bajaj YPS (1981) Growth and morphogenesis in frozen (-196°C) endosperm and embryos of rice. Curr Sci 50: 947–948

    Google Scholar 

  • Bajaj YPS (1982) Induction and cryopreservation of genetic variability in rice. In: Rice tissue culture planning conference, IRRI, Los Banos, Philippines, pp 99–111

    Google Scholar 

  • Bajaj YPS (1983a) In vitro production of haploids. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 1. Macmillan, New York, pp 228–287

    Google Scholar 

  • Bajaj YPS (1983b) Survival of somatic hybrid protoplasts of wheat x pea, and rice X pea subjected to -196°C. Indian J Exp Biol 21: 120–122

    Google Scholar 

  • Bajaj YPS (1984) The regeneration of plants from frozen pollen embryos and zygotic embryos of wheat and rice. Theor Appl Genet 67: 525–528

    Article  Google Scholar 

  • Bajaj YPS (1989a) Induction and cryopreservation of somaclonal variation in wheat and rice. Int Symp Genet manipulation in plants. CIMMYT, Mexico, pp 195–203

    Google Scholar 

  • Bajaj YPS (1989b) Recent advances in the isolation and culture of protoplasts and their implications in crop improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 8. Plant protoplasts and genetic engineering 1. Springer, Berlin Heidelberg New York Tokyo, pp 3–22

    Google Scholar 

  • Bajaj YPS (1989c) Genetic engineering and in vitro manipulation of plant cells — technical advances. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 9. Plant protoplasts and genetic engineering II. Springer, Berlin Heidelberg New York Tokyo, pp 1–25

    Google Scholar 

  • Bajaj YPS (1990a) Somaclonal variation — Origin, induction, cryopreservation, and implications in plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement, Springer, Berlin Heidelberg New York Tokyo, pp 3–48

    Google Scholar 

  • Bajaj YPS (1990b) In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 12. Haploids in plant improvement I. Springer, Berlin Heidelberg New York Tokyo, pp 3–44

    Google Scholar 

  • Bajaj YPS, Bidani M (1980) Differentiation of genetically variable plants from embryo-derived callus of rice. Phytomorphology 30: 290–294

    Google Scholar 

  • Bajaj YPS, Bidani M (1986) In vitro induction of genetic variability in rice (Oryza saliva L.). In: Siddiqui KA, Faruqui AM (eds) New genetical approaches to crop improvement. PIDC Printing Press, Karachi, pp 63–74

    Google Scholar 

  • Bajaj YPS, Gupta RK (1987) Plants from salt tolerant cell lines of napier grass Pennisetum purpureum Schum. Indian J Exp Biol 25: 58–60

    Google Scholar 

  • Bajaj YPS, Saettler AW (1970) Effect of halo-toxin-containing filtrates of Pseudomonas phaseolicola on the growth of bean callus tissue. Phytopathology 60: 1065–1067

    Article  CAS  Google Scholar 

  • Bajaj YPS, Phul PS, Sharma SK (1980a) Differential tolerance of tissue cultures of pearl-millet to ergot-extract. Indian J Exp Biol 18: 429–432

    Google Scholar 

  • Bajaj YPS, Saini SS, Bidani M (1980b) Production of triploid plants from the immature and mature endosperm cultures of rice. Theor Appl Genet 58: 17–18

    Google Scholar 

  • Behnke M (1979) Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of plants. Theor Appl Genet 55: 69–71

    Article  Google Scholar 

  • Buiatti M (1977) DNA amplification and tissue cultures. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New York, pp 358–3374

    Google Scholar 

  • ChaleffRS, Carlson PS (1975) Higher plant cells as experimental organisms. In: Markham R, Davies DR, Hopwood DA, Home RW (eds) Modification of the information content of plant cells. North Holland, Amsterdam, pp 197–214

    Google Scholar 

  • Chand PK, Davey MR, Power JB, Cocking EC (1988) An improved procedure for protoplast fusion using polyethylene glycol. J Plant Physiol 133: 480–485

    CAS  Google Scholar 

  • Chang TT (1985) Crop history and genetic conservation: rice — a case study. Iowa State J Res 59 (4): 425–455

    Google Scholar 

  • Chang TT (1987) The impact of rice on human civilization and population expansion. Interdiscip Sci Rev 12 (1): 63–69

    Google Scholar 

  • Chen Chi-Chang, Tsay Hsin-Sheng, Huang Chien-Rong (1986) Rice (Oryza saliva L.): factors affecting androgenesis. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York Tokyo, pp 123–138

    Google Scholar 

  • Chen LJ, Luthe DS (1987) Analysis of proteins from embryogenic and nonembryogenic rice (Oryza saliva L.) calli. Plant Sci 48: 181–188

    Article  CAS  Google Scholar 

  • Coulibaly MY, Demarly Y (1986) Regeneration of plantlets from protoplasts of rice, Oryza saliva L. Z Pflanzenzucht 96: 79–81

    Google Scholar 

  • Croughan TP, Stavarek SJ, Rains DW (1981) In vitro development of salt resistant plants. Environ Exp Bot 21: 317–324

    Article  Google Scholar 

  • D’Amato F (1965) Endopolyploidy as a factor in plant tissue development. In: White P, Grove RA (ed) Plant tissue culture. McCutchan, Berkeley, pp 449–462

    Google Scholar 

  • Duan X, Chen S (1985) Variation of the characters in rice (Oryzasativa) induced by foreign DNA uptake. China Agric Sci 3: 6–9

    Google Scholar 

  • Earle ED, Gracen VE, Yodder OC, Gemil KP (1978) Plant Physiol 61: 420

    Article  PubMed  CAS  Google Scholar 

  • FAO (1983) Major developments and issues in the world rice economy since 1970. Committee on commodity problems, intergovernmental group on rice. 27th session CCP: RI 84/5, FAO, Rome, pp 18

    Google Scholar 

  • FAO (1986) Production yearbook. FAO, Rome

    Google Scholar 

  • Fujimura T, Sakurai M, Akagi H, Negishi T, Hirose A (1985) Regeneration of rice plants from protoplasts. Plant Tissue Cult Lett 2: 74–75

    Article  Google Scholar 

  • Hanning G, Nabors M (1989) In vitro tissue culture selection for sodium chloride (NaC1) tolerance in rice and the performance of the regenerants under saline conditions. Proc Int Symp Genetic manipulation in crops. CIMMYT, Mexico, pp 239–248

    Google Scholar 

  • Hasegawa H, Mori S (1986) Non-proline-accumulating rice mutants resistant to hydroxy-L-proline. Theor Appl Genet 72: 226–230

    Article  CAS  Google Scholar 

  • Hasezawa S, Baba A, Syono K (1989) Protoplast culture and transformation studies on rice. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 9. Plant protoplasts and genetic engineering II. Springer Berlin Heidelberg New York Tokyo, pp 107–119

    Google Scholar 

  • Heyser JW, Dykes TA, Demott KJ, Nabors MW (1983) High frequency, long term regeneration of rice from callus cultures. Plant Sci Lett 29: 175–182

    Article  CAS  Google Scholar 

  • IRRI Rice Facts (1988) International Rice Research Institute, Los Banos

    Google Scholar 

  • Jones TJ, Rost TL (1989) The developmental anatomy and ultrastructure of somatic embryos from rice (Oryza saliva L.) scutellum epithelium cells. Bot Gaz 150: 31–42

    Article  Google Scholar 

  • Juliano BO (1985) Rice. J Plant Foods 6: 129–145

    Google Scholar 

  • Khush GS (1977) Disease and insect resistance in rice. Adv Agronomy 29: 265–341

    Article  Google Scholar 

  • Khush GS, Coffman WR (1977) Genetic evaluation and utilization (GEU) program. The rice improvement program of the Int Rice Res Inst. Theor Appl Genet 51: 97–110

    Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 7073

    Article  Google Scholar 

  • Klein TM, Fromm M, Weissinger A, Tomes D, Schaff S, Sletten M, Sanford JC (1988a) Transfer of foreign genes into intact maize cells using high-velocity microprojectiles. Proc Natl Acad Sci USA 85: 4305–4309

    Article  PubMed  CAS  Google Scholar 

  • Klein TM, Gradziel T, Fromm ME, Sanford JC (1988b) Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Biotechnology 6: 559–563

    Article  CAS  Google Scholar 

  • Kumamaru T, Satoh H, Omura T, Ogawa M (1984) Mutants for storage proteins of rice induced by N-methyl-N-nitrourea (NMU). Jpn J Breed 34 (2): 164–165

    Google Scholar 

  • Kyozuka J, Hayashi Y, Shimamoto K (1987) High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Mol Gen Genet 206: 408–413

    Article  CAS  Google Scholar 

  • Kyozuka J, Otoo E, Shimamoto K (1988) Plant regeneration from protoplasts of indica rice: genotypic differences in culture response. Theor Appl Genet 76: 887–890

    Article  Google Scholar 

  • Li C-C, Gan D, Xu J (1986) New progress on screening resistant mutant of rice in vitro. Sci Agric Sin 2: 93–94

    Google Scholar 

  • Li GM, Yang HY (1986) Further embryological studies on the in vitro apogamy in Oryza saliva L. Acta Bot Sin 28: 229–234

    Google Scholar 

  • Ling DH (1987) A quintuple reciprocal translocation produced by somaclonal variation in rice. Cereal Res Commun 15: 5–12

    Google Scholar 

  • Ling DH, Vidhyasekaran P, Borromeo ES, Zapata FJ, Mew TW (1985) In vitro screening of rice germplasm for resistance to brown spot disease using phytotoxin. Theor Appl Genet 71: 133–135

    Article  CAS  Google Scholar 

  • Ling DH, Ma ZR, Chen WY, Chen MF (1987) Male sterile mutant from somatic cell culture of rice. Theor Appl Genet 75: 127–131

    Article  Google Scholar 

  • Liu MC, Yeh HS (1984) Regeneration of NaCI-tolerant sugarcane plants from callus reinitiated from preselected differentiated shoots. Proc Natl Sci Counc B ROC 8: 110–118

    Google Scholar 

  • Luo Z-X, Wu R (1988) A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 6: 165–174

    Article  CAS  Google Scholar 

  • Masumura T, Shibata D, Hibino T, Kato T, Kawabe K, Takebe G, Tanaka K, Fujii S (1988) cDNA cloning of an mRNA encoding a sulfur rich l-kDa prolamin polypeptide in rice seeds. Plant Mol Biol (in press)

    Google Scholar 

  • Matern U, Strobel GA (1987) In vitro production of potatoes bearing resistance to fungal diseases. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 3. Potato. Springer, Berlin Heidelberg New York Tokyo, pp 298–317

    Google Scholar 

  • McHughen A, Swartz M (1984) A tissue-culture derived salt-tolerant line of flax (Linum usitatisimum). J Plant Physiol 117: 109–117

    Google Scholar 

  • Morinaga T, Fukushima E (1935) Cytological studies on Oryza saliva L. II. Spontaneous autotriploid mutants in Oryza saliva L. Jpn J Bot 7: 207–225

    Google Scholar 

  • Morota H, Uchimiya H (1987) Stable maintenance of foreign DNA in transformed cell lines of rice (Oryza saliva L.). Jpn J Genet 62: 363–368

    Article  Google Scholar 

  • Nabors M, Gibbs SE, Bernstein CS, Meis ME (1980) NaCl-tolerant tobacco plants from cultured cells. Z Pflanzenphysiol 97: 13–17

    CAS  Google Scholar 

  • Nagle W (1990) Gene amplification and related events. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York Tokyo, pp 153–201

    Google Scholar 

  • Nakano H, Tashiro T, Maeda E (1975) Plant differentiation in callus tissue induced from immature endosperm of Oryza saliva L. Z Pflanzenphysiol 76: 444 449

    Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation conditions I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol Biol 8: 363–373

    Google Scholar 

  • Niizeki H, Oono K (1968) Induction of haploid rice plant from anther culture. Proc Jpn Acad 44: 554–557

    Google Scholar 

  • Niizeki M, Tanaka M, Akada S, Hirai A, Saito K (1985) Callus formation of somatic hybrid of rice and soybean and characteristics of the hybrid callus. Jpn J Genet 60: 81–92

    Article  Google Scholar 

  • Ogura H, Kyozuka J, Hayashi Y, Koba T, Shimamoto K (1987) Field performance and cytology of protoplast-derived rice (Oryza saliva): high yield and low degree of variation of four japonica cultivars. Theor Appl Genet 74: 670–676

    Article  Google Scholar 

  • Ogura H, Kyozuka J, Hayashi Y, Shimamoto K (1989) Yielding ability and phenotypic uniformity in the selfed progeny of protoplast-derived rice plants. Jpn J Breed 39: 47–56

    Google Scholar 

  • Oono K, Kikuchi S, Takaiwa F (1986) DNA amplification and diminution in rice callus culture. Abstr Int Congr Plant tissue culture, Univ Minnesota, Minneapolis, p 287

    Google Scholar 

  • Ou-Lee TM, Turgeon R, Wu R (1986) Expression of a foreign gene linked to a plant virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat, and sorghum. Proc Natl Acad Sci USA 68: 6815–6819

    Article  Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT, Murthi Anishetty N (1983) Crop germplasm conservation and developing countries. Science 220: 163–169

    Article  PubMed  CAS  Google Scholar 

  • Sala C, Biasini MG, Morandi C, Nielson B, Parisi B, Sala F (1985) J Plant Physiol 118: 409

    CAS  Google Scholar 

  • Sala F, Cella R, Rollo F (1979) Freeze-preservation of rice cells grown in suspension culture. Physiol Plant 45: 170–176

    Article  CAS  Google Scholar 

  • Schaeffer GW, Sharpe FT (1981) Lysine in seed protein from S-aminoethyl-L-cysteine resistant anther-derived tissue cultures of rice. In Vitro 17: 345–352

    Google Scholar 

  • Schaeffer GW, Sharpe FT (1984) Mutations and cell selection: genetic variation for improved protein in rice. In: Owens LD (ed) Genetic engineering: application to agriculture. Rowman and Allenheld, Totowa, pp 237–254

    Google Scholar 

  • Schaeffer GW, Sharpe FT (1987) Increased lysine and seed storage protein in rice plants recovered from calli selected with inhibitory levels of lysine plus threonine and S-(2-aminoethyl) cysteine. Plant Physiol 84: 509–515

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer GW, Sharpe FT, Cregan PB (1984) Variation for improved protein and yield from rice anther culture. Theor Appl Genet 67: 383–389

    Article  CAS  Google Scholar 

  • Shillito RD, Saul MW, Paszkowski J, Potrykus I (1986) Direct gene transfer to plants. IAPTC Newslett 48: 5–15

    Google Scholar 

  • Stanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Particle Sci Tech 5: 27–37

    Article  Google Scholar 

  • Sun L-H, She J-M, Lu X-F (1986) In vitro selection of Xanthomonas oryzae-resistant mutants in rice. I. Induction of resistant callus and screening regenerated plants. Acta Genet Sin 13: 188–193

    Google Scholar 

  • Tal M (1990) Somaclonal variation for salt resistance. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York Tokyo, pp 236–257

    Google Scholar 

  • Terada R, Kyozuka J, Nishibayashi S, Shimamoto K (1987) Plantlet regeneration from somatic hybrids of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola Vasing). Mol Gen Genet 210: 39–43

    Article  Google Scholar 

  • Toriyama K, Hinata K, Sasaki T (1986) Haploid and diploid plant regenerated from protoplasts of anther callus of rice. Theor Appl Genet 73: 16–19

    Article  Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6: 1072–1074

    Article  CAS  Google Scholar 

  • Uchimiya H, Fushimi T, Hashimoto H, Harada H, Syono K, Sugawara Y (1986) Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L.). Mol Gen Genet 204: 204–208

    Article  CAS  Google Scholar 

  • Vajrabhaya M, Thanapaisal T, Vajrabhaya T (1989) Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep 8: 411–414

    Article  Google Scholar 

  • Wakasa K, Widholm JM (1987) A 5-methyltryptophan resistant rice mutant MTRI, selected in tissue culture. Theor Appl Genet 74: 49–54

    Article  Google Scholar 

  • Wang YC, Klein TM, Fromm M, Cao J, Sanford JC, Wu R (1988) Transient expression of foreign genes into intact cells of rice, wheat and soybean following particle bombardment. Plant Mol Biol 11: 433–439

    Article  CAS  Google Scholar 

  • Wong CK, Woo SC, Ko SW (1986) Production of rice plantlets on NaCI-stressed medium and evaluation of their progenies. Bot Bull Acad Sin 27: 11–23

    Google Scholar 

  • Yamada Y, Ogawa M, Yano S (1983) In: Cell and tissue culture techniques for cereal crop improvement. Science Press, Beijing, pp 237–254

    Google Scholar 

  • Yamada Y, Qi YZ, Tai TD (1986) Plant regeneration from protoplast-derived callus of rice (Oryza sativa L.). Plant Cell Rep 5: 85–88

    Article  Google Scholar 

  • Yang H, Zhang HM, Davey MR, Mulligan BJ, Cocking EC (1988) Production ofkanamycin resistant rice tissue following DNA uptake into protoplasts. Plant Cell Rep 7: 421–425

    CAS  Google Scholar 

  • Yang Z-Q, Shikanai T, Yamada Y (1988) Asymmetric hybridization bztween cytoplasmic male-sterile (CMS) and fertile rice (Oryza saliva L.) protoplasts. Theor Appl Genet 76: 801–808

    Article  Google Scholar 

  • Yano S, Ogawa M, Yamada Y (1982) Plant formation from selected rice cells resistant to salts. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 495–496

    Google Scholar 

  • Zhang HM, Yang H, Rech EL, Golds TJ, Davis AS, Mulligan BJ, Cocking EC, Davey MR (1988) Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep 7: 379–384

    CAS  Google Scholar 

  • Zhang W, Wu R (1988) Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor Appl Genet 76: 835–840

    Article  Google Scholar 

  • Zheng KL, Castiglione S, Biasini MG, Biroli A, Morandi C, Sala F (1987) Nuclear DNA amplification in cultured cells of Oryza sativa L. Theor Appl Genet 74: 65–70

    Article  CAS  Google Scholar 

  • Zheng Z-L, Chu Q-R, Zhang C-M (1985) Pathogenecity of culture filtrate from Pyricularia orvzae on rice. Acta Agric Shanghai 1: 85–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajaj, Y.P.S. (1991). Biotechnology in Rice Improvement. In: Bajaj, Y.P.S. (eds) Rice. Biotechnology in Agriculture and Forestry, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83986-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83986-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83988-7

  • Online ISBN: 978-3-642-83986-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics