Advertisement

Mechanisms and Sites of Transepithelial Ca2+ Transport in Kidney Cells

  • R. J. M. Bindels
  • J. A. H. Timmermans
  • R. J. J. M. Bakens
  • A. Hartog
  • E. van Leeuwen
  • C. H. van Os
Conference paper
Part of the NATO ASI Series book series (volume 48)

Abstract

In epithelial cells, possible mechanisms involved in active transcellular Ca2+ transport are: a passive entry step at the apical membrane, diffusion through the cytoplasm, and active extrusion mechanisms located in the basolateral membrane (van Os, 1987). The latter mechanisms, i.e. Ca2+-ATPase and Na+/Ca2+ exchange, have been studied extensively in basolateral membranes from the kidney.

Keywords

Basolateral Membrane Distal Convoluted Tubule Entry Blocker Intercalate Cell Mock Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avodin PV, Menshikor MY, Svitina-Ulitana IV, Tkachuk VA (1988) Blocking of the receptor-stimulated calcium entry into human platelets by verapamil and nicardipine. Thromboses Res 52: 587–597CrossRefGoogle Scholar
  2. Bakker R, Groot JA (1984) cAMP-mediated effects of ouabain and theophylline on paracellular ion selectivity. Am J Physiol 246: G213 - G217Google Scholar
  3. Bronner F (1989) Renal calcium transport: mechanisms and regulation - An overview. Am J Physiol 257: F707 - F711PubMedGoogle Scholar
  4. Fejes-Tóth G, Nâray-Fejes-Tóth A (1987) Differentiated transport functions in primary cultures of rabbit collecting ducts. Am J Physiol 253: F1302 - F1307PubMedGoogle Scholar
  5. Friedlander EJ, Norman AW (1980) Purification of chick intestinal calcium-binding protein. Methods in Enzymology 67: 504–508PubMedCrossRefGoogle Scholar
  6. Helene-Kolb C, Montrose MH, Murer H (1990) Regulation of Na exchange in opossum kidney cells by parathyroid hormone, cyclic AMP and phorbol esters. Plügers Arch 415: 461–470CrossRefGoogle Scholar
  7. Hosey MM, Lazdunski M (1988) Calcium channels: Molecular pharmacology, structure amd regulation. J Membrane Biol 104: 81–105CrossRefGoogle Scholar
  8. Homaidan FR, Domwitz M, Weiland GA, Sharp GWG (1989) Two calcium channels in basolateral membranes of rabbit ileal epithelial cells. Am J Physiol 257: G86 - G93PubMedGoogle Scholar
  9. McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative, a new fixative for iimmunoelectron microscopy. J Histochem Cytochem 22: 1077–1083PubMedCrossRefGoogle Scholar
  10. Taylor AN, McIntosh JE, Bourdeau JE (1982) Immunocytochemical localization of vitamin D-dependent calcium-binding protein in renal tubules of rabbit, rat and chick. Kidney Int 21: 765–773PubMedCrossRefGoogle Scholar
  11. Van Heeswijk MPE, Geertsen JAM, van Os CH (1984) Kinetic properties of the ATP-dependent Ca2+ pimp and the Na/Cam exchange system in basolateral membranes from rat kidney cortex. J Membrane Biol 79: 19–31CrossRefGoogle Scholar
  12. Van Os CH (1987) Transcellular calcium transport in intestinal and renal epithelial cells. Biochim Biophys Acta 906: 195–222PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. J. M. Bindels
    • 1
  • J. A. H. Timmermans
    • 1
  • R. J. J. M. Bakens
    • 1
  • A. Hartog
    • 1
  • E. van Leeuwen
    • 1
  • C. H. van Os
    • 1
  1. 1.Department of PhysiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations