Skip to main content

Control of Glycogen Metabolism and Phosphorylase Kinase. A Model System for Studying Signal Transduction Mechanisms Mediated by Protein Phosphorylation and Ca2+

  • Conference paper
Signal Perception and Transduction in Higher Plants

Part of the book series: NATO ASI Series ((ASIH,volume 47))

Abstract

One of the best studied metabolic control systems regulates the formation and breakdown of glycogen in mammalian tissues (Huijing, 1975). Glycogen constitutes the main storage form of carbohydrate in mammalian cells and it is the major energy source which sustains ATP levels during muscle contraction. At least 95% of the polymer is located in skeletal muscle and liver, where it plays quite different roles (Cohen, 1976). The rate limiting enzymes in cytosolic glycogenolysis and glycogen synthesis are glycogen phosphorylase and glycogen synthase, while branching and debranching enzymes are considered to be present in excess in normal animals and are therefore not rate-limiting. In this respect, although the current convention regards phosphorylase as a purely degradative enzyme with no synthetic role, it seems possible that intracellular local concentrations of its substrates glucose-1-P and Pi may on occasions favour synthesis (Geddes, 1986). In addition, a potential cellular degradative pathway, concerning cellular glycogen associated with the lysosomal compartments, was also revealed; in this case, the enzyme 1,4-a-glycosidase is responsible for the degradation of the polysaccharide (Geddes, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baltas LG, Zevgolis VG, Kyriakidis SM, Sotiroudis TG, Evangelopoulos AE (1989) Modulation of phosphorylase kinase activity by sphingolipids. Biochem Inter, in press

    Google Scholar 

  • Browning M, Bennett W, Lynch G (1979) Phosphorylase kinase phosphorylates a brain protein which is influenced by repetitive synaptic activation. Nature 278: 273–275

    Article  PubMed  CAS  Google Scholar 

  • Carlson GM, Bechtel PJ, Graves DJ (1979) Chemical and regulatory properties of phosphorylase kinase and cyclic APP-dependent protein kinase. Adv Enzymol 50: 41–115

    PubMed  CAS  Google Scholar 

  • Chan KFJ, Graves DJ (1984) Molecular properties of phosphorylase kinase. In:Cheung WY (ed) Calcium and cell function vol 5. Academic Press, New York, p 1

    Google Scholar 

  • Chan CP, Krebs EG (1986) Effects of growth factors on carbohydrate metabolism in cultured mammalian cells. In:Belfrage P, Donner J, Stalfors P (eds) Mechanisms of insulin action. Elsevier, Amsterdam, p 13

    Google Scholar 

  • Cheng A, Carlson GM (1988) Competition between nucleoside diphosphates and triphosphates at the catalytic and allosteric sites of phosphorylase kinase. J Biol Chem 263: 5543–5549

    PubMed  CAS  Google Scholar 

  • Cohen P (1976) Control of enzyme activity. Chapman and Hall Ltd., London

    Google Scholar 

  • Dombradi VK, Silberban SR, Lee EYC, Caswell AH, Brandt NR (1984) The association of phosphorylase kinase with rabbit muscle T-tubules. Arch Biochem Biophys 230: 615–630

    Article  PubMed  CAS  Google Scholar 

  • Geddes R (1986) Glycogen: a metabolic viewpoint. Biosci Rep 6: 415–428

    Article  PubMed  CAS  Google Scholar 

  • Georgoussi Z, Heilmeyer LMG Jr (1986) Evidence that phosphorylase kinase exhibits phosphatidylinositol kinase activity. Biochemistry 25: 3867–3874

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Bell RM (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243: 500–507

    Article  PubMed  CAS  Google Scholar 

  • Huijing F (1975) Glycogen metabolism and glycogen-storage diseases. Physiol Rev 55: 609–658

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Nakaza T, Negami A, Nakamura S, Yamamura H (1984) Phosphorylation of myelin basic protein by glycogen phosphorylase kinase. FEES Lett 169: 224–228

    Article  CAS  Google Scholar 

  • Ktenas TB, Sotiroudis TG, Nikolaropoulos S, Evangelopoulos AE (1985) Interaction of phosphorylase kinase with polymyxins. Biochem Biophys Res Commun 133: 891–896

    Article  PubMed  CAS  Google Scholar 

  • Ktenas TB, Sotiroudis TG, Nikolaropoulos S, Evangelopoulos AE (1985) Interaction of phosphorylase kinase with polymyxins. Biochem Biophys Res Commun 133: 891–896

    Article  PubMed  CAS  Google Scholar 

  • Kyriakidis SM, Sotiroudis TG, Evangelopoulos AE (1986a) Interaction of flavonoids with rabbit muscle phosphorylase kinase. Biochim Biophys Acta 871: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Kyriakidis SM, Sotiroudis TG, Evangelopoulos AE (1986b) Stimulation of glycogen phosphorylase kinase by phospholipids. Biochem Inter 13: 853–861

    CAS  Google Scholar 

  • Kyriakidis SM, Sotiroudis TG, Evangelopoulos AE (1988) Ca7 -and Mg2+ dependent association of phosphorylase kinase with human erythrocyte membranes. Biochim Biophys Acta 972: 347–352

    Article  PubMed  CAS  Google Scholar 

  • Larner J (1988) Insulin-signaling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes 37: 262–275

    PubMed  CAS  Google Scholar 

  • Nikolaropoulos S, Sotiroudis TG (1985) Phosphorylase kinase from chicken gizzard. Partial purification and characterization. Eur J Biochem 151: 467–473

    Google Scholar 

  • Paul RJ (1989) Smooth muscle energetics. Annu Rev Physiol 51: 331–349

    Article  PubMed  CAS  Google Scholar 

  • Pickett-Gies CA, Walsh DA (1986) Phosphorylase kinase. In:Boyer P, Krebs EG (eds) The Enzymes vol 17. Academic Press, New York, p 395

    Google Scholar 

  • Schiender KK, Thysseril TJ, Hegazy MG (1988) Calcium-dependent phosphorylation of bovine cardiac C-protein by phosphorylase kinase. Biochem Biophys Res Commun 155: 45–51

    Article  Google Scholar 

  • Schulman H (1988) The multifuntional Ca calmodulin dependent protein kinase. In:Greengard P, Robinson GA (eds) Advances in second messenger and phosphoprotein research vol 22. Raven Press, New York, p 39

    Google Scholar 

  • Silver PJ, Stull JT (1982) Regulation of myosin light chain and phosphorylase phusphorylation in tracheal smooth muscle. J Biol Chem 257: 6145–6150

    PubMed  CAS  Google Scholar 

  • Singh TJ, Wang JH (1979) Stimulation of glycogen phosphorylase kinase from rabbit skeletal muscle by organic solvents. J Biol Chem 254: 8466–8472

    PubMed  CAS  Google Scholar 

  • Sotiroudis TG, Nikolaropoulos S (1984) Selective labelling of phosphorylase kinase with fluorescein isothiocyanate. F-LrbS Lett 176: 421–425

    Article  CAS  Google Scholar 

  • Sotiroudis TG, Nikolaropoulos S, Evangelopoulos AE (1986) Glycogen metabolism in smooth muscle. In:Heilmeyer LMG (ed) Signal transduction and protein phosphorylation, Plenum Press, New York, p 243

    Google Scholar 

  • Sotiroudis TG, Nikolaropoulos S, Evangelopoulos AE (1986) Glycogen metabolism in smooth muscle. In:Heilmeyer LMG (ed) Signal transduction and protein phosphorylation, Plenum Press, New York, p 243

    Google Scholar 

  • Steck TL (1974) The organization of proteins in the human red blood cell membrane. J Cell Biol 62: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Thieleczek R„ Behle G, Messer A, Varsanyi M, Heilmeyer LMG Jr, Drenckhahn D (1987) Localization of phosphorylase kinase subunits at the sarcoplasmic reticulum of rabbit skeletal muscle by monoclonal and poly-clonal antibodies. Eur J Cell Biol 44: 333–340

    PubMed  Google Scholar 

  • Thieleczek R„ Behle G, Messer A, Varsanyi M, Heilmeyer LMG Jr, Drenckhahn D (1987) Localization of phosphorylase kinase subunits at the sarcoplasmic reticulum of rabbit skeletal muscle by monoclonal and poly-clonal antibodies. Eur J Cell Biol 44: 333–340

    PubMed  CAS  Google Scholar 

  • Zevgolis VG, Sotiroudis TG, Evangelopoulos AE. Phosphorylase kinase from bovine stomach smooth muscle. Purification and characterization. Submitted for publication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sotiroudis, T.G., Zevgolis, V.G., Baltas, L.G., Kyriakidis, S.M. (1990). Control of Glycogen Metabolism and Phosphorylase Kinase. A Model System for Studying Signal Transduction Mechanisms Mediated by Protein Phosphorylation and Ca2+ . In: Ranjeva, R., Boudet, A.M. (eds) Signal Perception and Transduction in Higher Plants. NATO ASI Series, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83974-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83974-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83976-4

  • Online ISBN: 978-3-642-83974-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics