Advertisement

Immortalization of Oligodendrocyte Precursors from the Optic Nerve of the Rat with a Temperature-Sensitive form of the SV40 T Antigen Using a Retrovirus Vector

  • Guillermina Almazan
Conference paper
Part of the NATO ASI Series book series (volume 43)

Abstract

Considerable amount of information regarding the cell of origin and the mode of differentiation of oligodendroglial cells has been derived from studies using primary culture. In the optic nerve of the rat, oligodendrocytes differentiate from a bipotential progenitor cell, the O2A precursor, which also gives rise to type 2 astrocyte. The O2A lineage is characterized by the expression on its plasma membrane of gangliosides recognized by a monoclonal antibody A2B5 (Raff et al. 1983). The differentiation step from the progenitor to the astroglial or oligodendroglial lineage can be influenced by growth factors present in the medium. Thus, in the presence of fetal calf serum most cells differentiate into type 2 astrocyte expressing glial fibrillary acidic protein (GFAP), whereas in serum-free medium they will develop into oligodendrocytes expressing galactocerebroside (GC, Hughes &Raff 1987). PDGF and CNTF (ciliary neurotrophic factor) are implicated as growth factor signals from type 1 astrocytes which influence the proliferation and differentiation of O2A progenitors (Richardson et aI. 1988; Noble et al. 1988, Lillien et al., 1988). An oligodendrocyte progenitor cell with characteristics similar to the O2A optic lineage has also been obtained from cerebellum (Levi et al. 1986) and cerebral hemispheres (Behar et al. 1988) in rats. These two regions of the central nervous system are the primary source for the study of glial differentiation in tissue culture.

Keywords

Optic Nerve Glial Fibrillary Acidic Protein Myelin Basic Protein Oligodendrocyte Progenitor Cell Oligodendrocyte Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abney E.R., Bartlett P.P. and Raff M.C. (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Develop. Biol. 83: 301–310.PubMedCrossRefGoogle Scholar
  2. Almazan G., Honegger P., Matthieu J.-M. and Guentert-Lauber B. (1985) Epidermal growth factor and bovine growth hormone stimulate differentiation and myelination of brain cell aggregates in culture. Dev. Brain Res. 21: 257–264.CrossRefGoogle Scholar
  3. Almazan G. and McKay (1989) Oligodendrocyte precursor cell lines from the rat optic nerve (submitted for publication).Google Scholar
  4. Bansal R. and Pfeiffer S.E. (1985) Developmental expression of 2’,3’-cyclic nucleotide 3’-phosphohydrolase in dissociated fetal rat brain cultures and rat brain. J. Neurosci. Res. 14: 21–34.PubMedCrossRefGoogle Scholar
  5. Barbarese E and Pfeiffer S.E. (1981) Developmental regulation of myelin basic protein in dispersed cultures. Proc. Natl. Acad. Sci. 78: 1953–1975.PubMedCrossRefGoogle Scholar
  6. Behar T., McMorris F.A., Novotny E.A., Barker J.L. and Dubois-Dalcq M. (1988) Growth and differentiation properties of O-2A progenitors purified from rat cerebral hemispheres. J. Neurosci. Res. 21: 168–180.PubMedCrossRefGoogle Scholar
  7. Bernier L., Alvarez F., Norgard E.M., Raible D.W., Mentaberry A., Schembri J.G., Sabatini D.D. and Colman D.R. (1987) Molecular cloning of a 2’,3’-cyclic necleotide 3’-phosphodiesterase: mRNAs with different 5’ ends encode the same set of proteins in nervous and lymphoid tissues. J. Neurosci. 7: 2703–2710.PubMedGoogle Scholar
  8. Benveniste E.N. and Merrill J.E. (1988) Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature 321: 610–613.CrossRefGoogle Scholar
  9. Bologa-Sandru J.C., Joubert R., Marangos P.J., Derbin C., Rioux F. and Herschkowitz N. (1982) Accelerated differentiation of oligodendrocytes in neuronal rich embryonic mouse brain cell cultures. Brain Res. 252: 129–136.CrossRefGoogle Scholar
  10. Bradel E.J. and Prince F.P. (1983) Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons. J. Neurosci. Res. 9: 381–392.PubMedCrossRefGoogle Scholar
  11. Colman D.R., Kreibich G., Frey A.B. and Sabatini D.D. (1982) Synthesis and incorporation of myelin polypeptides into CNS myelin. J. Cell Biology 95: 598–608.CrossRefGoogle Scholar
  12. Dubois-Dalcq M., Behar T., Hudson L. and Lazzarini R.A. (1986) Timely emergence of three myelin proteins in oligodendrocytes. J. Cell Biology 102: 384–392.CrossRefGoogle Scholar
  13. Eccleston P.A. and Silberberg D.H. (1985) Fibroblast growth factor is a mitogen for oligodendrocytes in vitro. Dev. Brain Res. 21: 315–318.CrossRefGoogle Scholar
  14. Eisenbarth G.S., Walsh F.S. and Nirenberg M. (1979) Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Nat. Acad. Sci. 76: 1286.CrossRefGoogle Scholar
  15. Fritz R.B. and Chou C.H. (1983) Epitopes of peptide 43–88 of guinea pig myelin basic protein: localization with monoclonal antibodies. J. Immunology 130: 2180–2183.Google Scholar
  16. Hughes S.H. and Raff M.C. (1987) An inducer protein may control the timing of fate switching in a bipotential glial progenitor cell in rat optic nerve. Development 101: 157–167.PubMedGoogle Scholar
  17. Jat P.S. and Sharp P.A. (1986) Large T-antigens of simian virus 40 and polyoma virus efficiently establish primary fibroblasts. J. Virol. 59: 746–750.PubMedGoogle Scholar
  18. Knapp P.E., Bartlett W.P. and Skoff R.P. (1987) Cultured oligodendrocytes mimic in vivo phenotypic characteristics: cell shape, expression of myelin-specific antigens, and membrane production. Dev. Biol. 120: 356–365.PubMedCrossRefGoogle Scholar
  19. Levi G., Gallo V. and Ciotti M.T. (1986) Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and “neuron-like” gamma-aminobutyric acid transport. Proc. Natl. Acad. Sci. USA 83: 1504–1508.PubMedCrossRefGoogle Scholar
  20. Lillien L.E., Sendtner M., Rohrer H., Hughes S.M. and Raff M.C. (1988) Type-2 astrocyte development in rat brain cultures is initiated by a CNTF-like protein produced by type-1 astrocytes. Neuron 1: 485–594.PubMedCrossRefGoogle Scholar
  21. McMorris F.A. (1983) Cyclic AMP induction of the myelin enzyme 2’,3’-cyclic nucleotide 3’-phosphohydrolase in rat oligodendrocytes. J. Neurochem. 41: 506–515.PubMedCrossRefGoogle Scholar
  22. McMorris F.A. and Dubois-Dalcq M. (1988) Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J. Neurosci. Res. 21: 199–209.PubMedCrossRefGoogle Scholar
  23. McMorris F.A., Smith T.M., De Salvo S. and Furlanetto R. W. (1986) Insulin-like growth factor I/somatomedin C: A potent inducer of oligodendrocyte development. Proc. Nat. Acad. Sci. 83: 822–826.PubMedCrossRefGoogle Scholar
  24. Miller R.H., David S., Patel P., Abney E.R. and Raff M.C. (1985) A quantitative immunohistochemical study of microglial cell development in the rat optic nerve: in vivo evidence for two distinct astrocyte lineages. Dev. Biol. 111: 35–41.PubMedCrossRefGoogle Scholar
  25. Noble M., Murray K., Stroobant P., Waterfield M.D. and Riddle P. (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333: 560–565.PubMedCrossRefGoogle Scholar
  26. Nussbaum J.L., Espinosa de los Monteros A., Pari F.M., Doerr-Schott J., Roussel G and Neskovic N.M. (1988) A morphological and biochemical study of the myelin-like membrane structures formed in cultures of pure oligodendrocytes. Int. J. Dev. Neuroscience 6: 395–408.CrossRefGoogle Scholar
  27. Paucha E., Kalderon K., Harvey R.W. and Smith A.E. (1986) Simian virus 40 origin DNA-binding domain on large T antigen. J. Virol. 57: 50–54.PubMedGoogle Scholar
  28. Pfeiffer S.E., Barbarese E. and Bhat S. (1981) Noncoordinate regulation of myelinogenic parameters in primary cultures of dissociated fetal rat brain. J. Neurosci. Res. 6: 369–380.PubMedCrossRefGoogle Scholar
  29. Poduslo S.E., Curbeam R., Miller K. and Reier P. (1985) Purification and characterization of cultures of oligodendroglia from rat brain. J. Neurosci. Res. 14: 433–447.PubMedCrossRefGoogle Scholar
  30. Raff M.C., Miller R.H. and Noble M. (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303: 390–396.PubMedCrossRefGoogle Scholar
  31. Ranscht B., Clapshaw P.A., Price J., Noble M. and Seifert W. (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc. Natl. Acad. Sci. USA 79: 2709–2713.PubMedCrossRefGoogle Scholar
  32. Reynolds R., Carey E.M. and Herschkowitz N. (1989) Immunohistochemical localization of myelin basic protein and 2’,3’-cyclic nucleotide 3’-phosphohydrolase in flattened membrane expansions produced by cultured oligodendrocytes. Neuroscience 28: 181–188.PubMedCrossRefGoogle Scholar
  33. Richardson W.D., Pringle N., Mosley M.J., Westermark B. and Dubois-Dalcq M. (1988) A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53: 309–319.PubMedCrossRefGoogle Scholar
  34. Rome L.H., Bullock P.N., Chiappelli F., Cardwell, Adinolfi A.M. and Swanson D. (1986) Synthesis of a myelin-like membrane by oligodendrocytes in culture. J. Neurosci. Res. 15: 49–65.PubMedCrossRefGoogle Scholar
  35. Saneto R.P., Low K.G., Melner M.H. and de Vellis J. (1988) Insulin/insulinlike growth factor I and other epigenetic modulators of myelin basic protein expression in isolated oligodendrocyte progenitor cells. J. Neurosci. Res. 21: 210–219.PubMedCrossRefGoogle Scholar
  36. Sarlieve L.L., Rao G.S., Campbell G. L. and Pieringer R.A. (1980) Investigations on myelination in vitro: Biochemical and morphological changes in cultures of dissociated brain cells from embryonic mice. Brain Res. 189: 70–90.CrossRefGoogle Scholar
  37. Szuchet S., Polak P.E. and Yim S.H. (1986) Mature oligodendrocytes cultured in the absence of neurons recapitulate the ontogenic development of myelin membranes. Dev. Neurosci. 8: 208–221.PubMedCrossRefGoogle Scholar
  38. Tegtmeyer P. and Ozer H.L. (1971) Temperature-sensitive mutants of simian virus 40: Infection of permissible cells. J. Virol. 8: 516–520.PubMedGoogle Scholar
  39. Watanabe T. and Raff M.C. (1988) Retinal astrocytes are immigrants from the optic nerve. Nature 332: 834–836.PubMedCrossRefGoogle Scholar
  40. Zeller N.K., Behar T.N., Dubois-Dalcq M.E. and Lazzarini R.A. (1985) The timely expression of myelin basic protein gene in cultured rat brain oligodendrocytes is independent of continuous neuronal influences. J. Neurosci. 5: 2955–2962.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Guillermina Almazan
    • 1
  1. 1.Department of PharmacologyMcGill UniversityMontrealCanada

Personalised recommendations