Skip to main content

cAMP-Dependent Protein Kinase: Subunit Diversity and Functional Role in Gene Expression

  • Conference paper
Cellular and Molecular Biology of Myelination

Part of the book series: NATO ASI Series ((ASIH,volume 43))

Abstract

The cAMP-dependent protein kinase (cAMP-PK) exists as an inactive tetramer of two regulatory (R) and two catalytic (C) subunits which are dissociated by cAMP to form an R dimer and two C monomers. The free C subunits are active for substrate phosphorylation. Several subunits have been purified and structurally defined by amino acid sequencing. More recently, heterogenous forms which appear to be products of different genes have been identified by cDNA sequencing. So far a greater number of R subunits than C subunits have been found. The spectrum of mammalian subunits is shown in Table I. From the four different R subunits and two different C subunits, at least 8 different tetrameric holoenzymes can be formed. This minimal number assumes only homodimers of identical R or C subunits. Heterodimers of types I and II R subunits are not found in a holoenzyme complex, however, it has not been demonstrated whether or not α and ß forms can combine to make heterodimers of R-I or R-II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bechtel PJ, Beavo JA, Krebs EG (1977) Purification and characterization of catalytic subunit of skeletal muscle adenosine 3’:5’-monophosphate-dependent protein kinase. J. Biol. Chem. 252: 2691–2697

    Google Scholar 

  • Beebe SJ, Corbin JD (1986) Cyclic nucleotide-dependent protein kinases. In: Boyer PD, Krebs EG (eds) The Enzymes. Control by phosphorylation, Part A, 3rd edn. Academic Press, London, pp 43–111

    Chapter  Google Scholar 

  • Büchler W, Meinecke M, Chakraborty T, Jahnsen T, Walter U, Lohmann SM (1989) Regulation of gene expression by transfected subunits of cAMP-dependent protein kinase. Submitted.

    Google Scholar 

  • Büchler W, Walter U, Jastorff B, Lohmann SM (1988) Catalytic subunit of cAMPdependent protein kinase is essential for cAMP-mediated mammalian gene expression. FEBS Lett. 228: 27–32

    Article  PubMed  Google Scholar 

  • Büchler W, Walter U, Lohmann SM (1987) Involvement of C subunit of cAMP-dependent protein kinase in mediation of gene expression in hepatocytes. J. Cell. Biol. 105: 65a

    Google Scholar 

  • Clegg CH, Cadd GG, McKnight GS (1988) Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 85: 3703–3707

    Google Scholar 

  • Comb M, Hyman SE, Goodman HM (1987) Mechanisms of trans-synaptic regulation of gene expression. TINS 10: 473–478

    CAS  Google Scholar 

  • Comb M, Mermod N, Hyman SE, Pearlberg J, Ross ME, Goodman HM (1988) Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J. 7: 3793–3805

    PubMed  CAS  Google Scholar 

  • Constantinou AI, Squinto SP, Jungmann RA (1985) The phosphoform of the regulatory subunit R-II of cyclic AMP-dependent protein kinase possesses intrinsic topoisomerase activity. Cell 42: 429–437

    Article  PubMed  CAS  Google Scholar 

  • Day RN, Walder JA, Mauer RA (1989) A protein kinase inhibitor gene reduces both basal and multihormone-stimulated prolactin gene transcription. J. Biol. Chem. 264: 431–436

    Google Scholar 

  • DeCamilli P, Moretti M, Denis Donini S, Walter U, Lohmann SM (1986) Heterogeneous distribution of the cAMP receptor protein R-II in the nervous system: Evidence for its intracellular accumulation on microtubules, microtubule-organizing centers, and in the area of the Golgi complex. J. Cell Biol. 103: 189–203

    Google Scholar 

  • Edelman AM, Blumenthal DK, Krebs EG (1987) Protein serine/threonine kinases. In: Richardson CC, et al. (eds) Annual Review of Biochemistry vol 56. Palo Alto, California, p 567–613

    Google Scholar 

  • First EA, Bubis J, Taylor SS (1988) Subunit interaction sites between the regulatory and catalytic subunits of cAMP-dependent protein kinase. J.Biol.Chem. 263: 5176–5182

    PubMed  CAS  Google Scholar 

  • Gomer RH, Armstrong D, Leichtling BH, Firtel RA (1986) cAMP induction of prespore and prestalk gene expression in Dictyostelium is mediated by the cell-surface cAMP receptor. Proc. Natl. Acad. Sci. USA 83: 8624–8628

    Google Scholar 

  • Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs III W, Vale WW, Montminy MR (1989) A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337: 749–752

    Article  PubMed  CAS  Google Scholar 

  • Hai T, Liu F, Allegretto EA, Karin M, Green MR (1988) A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes & Develop. 2: 1216–1226

    Article  CAS  Google Scholar 

  • Hemming BA, Aitkin A, Cohen P, Rymond M, Hofmann F (1982) Phosphorylation of the type-II regulatory subunit of cyclic AMP-dependent protein kinase by glycogen synthase kinase 3 and glycogen synthase kinase 5. Eur. J. Biochem. 127: 473–481

    Google Scholar 

  • Hoef fler JP, Meyer TE, Yun Y, Jameson JL, Habener JF (1988) Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242: 1430–1433

    Article  CAS  Google Scholar 

  • Jahnsen T, Hedin L, Kidd VJ,. Beattie WG, Lohmann SM, Walter U, Durica J, Schulz TZ, Schultz E, Browner M, Lawrence CB, Goldman D, Ratoosh SL, Richards JS (1986) Molecular cloning, cDNA structure, and regulation of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulosa cells. J. Biol. Chem. 261: 12352–12361

    Google Scholar 

  • Kaczmarek LK, Jennings KR, Strum wasser F, Nairn AC, Walter U, Wilson FD, Greengard P (1980) Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. Proc. Acad. Sci. USA 77: 7487–7491 38tax

    Google Scholar 

  • Katoh I, Yoshinaka Y, Ikawa Y (1989) Bovine leukemia virus trans-activator p activates heterologous promoters with a common sequence known as a cAMPresponsive element or the binding site of a cellular transcription factor ATF. EMBO J. 8: 497–503

    PubMed  CAS  Google Scholar 

  • Lee DC, Carmichael DF, Krebs EG, McKnight GS (1983) Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 80: 3608–3612

    Google Scholar 

  • Levitan IB, Lemos JR, Novak-Hofer I (1983) Protein phosphorylation and the regulation of ion channels. TINS 6: 496–499

    CAS  Google Scholar 

  • Lohmann SM, Büchler W, Meinecke M, Walter U (1988) Multiple forms of cAMPdependent protein kinase and their role in cAMP-mediated hormone regulation and gene expression. In: Imura H, et al. (eds) Progress in endocrinology. Elsevier, Amsterdam, p989–994

    Google Scholar 

  • Lohmann SM, DeCamilli P, Walter U (1988) Type II cAMP-dependent protein kinase regulatory subunit-binding proteins. Methods in Enzymology 159: 183–193

    Article  PubMed  CAS  Google Scholar 

  • Lohmann SM, Walter U (1984) Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases. In: Greengard, P. et al. (eds) Advances in Cyclic Nucleotide and Protein Phosphorylation Research vol 18. Raven Press, New York, p 63–117

    Google Scholar 

  • Maurer RA (1989) Both isoforms of the cAMP-dependent protein kinase catalytic subunit can activate transcription of the prolactin gene. J. Biol. Chem. 264: 6870–6873

    PubMed  CAS  Google Scholar 

  • Mellon P, Clegg CH, Correll LA, McKnight GS (1989) Regulation of transcription by cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 86: 4887–4891

    Google Scholar 

  • Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH (1986) Identification of a cAMP-responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83: 6682–6686

    Google Scholar 

  • Mutzel R, Lacombe M-L, Simon M-N, de Gunzberg J, Veron M (1987) Cloning and cDNA sequence of the regulatory subunit of cAMP-dependent protein kinase from Dictostelium discoideum. Proc. Natl. Acad. Sci. USA 84: 6–10

    Google Scholar 

  • Nagamini Y, Reich E (1985) Gene expression and cAMP. Proc. Natl. Acad. Sci. USA 82: 4606–4610

    Google Scholar 

  • Nakagawa J, von der Ahe D, Pearson D, Hemmings BA, Shibahara S, Nagamine Y (1988) Transcriptional regulation of a plasminogen activator gene by cyclic AMP in a homologous cell-free system. J. Biol. Chem. 263: 2460–2468

    Google Scholar 

  • Nigg EA, Hilz H, Eppenberger HM, Dutly F (1985) Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J. 11: 2801–2806

    Google Scholar 

  • Osterrieder W, Brum G, Hescheler J, Trautwein W, Flockerzi V, Hofmann F (1982) Injection of subunits ozf cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca + current. Nature 298: 576–578

    Article  PubMed  CAS  Google Scholar 

  • Oyama M, Blumberg DD (1986) Interaction of cAMP with the cell-surface receptor induces cell-type-specific mRNA accumulation in Dictyostelium discoideum. Proc. Natl. Acad. Aci. USA 83: 4819–4823

    Google Scholar 

  • Rangel-Aldao R, Rosen OM (1976) Dissociation and reassociation of phosphorylated and nonphosphorylated forms of cAMP-dependent protein kinase from bovine cardiac muscle. J. Biol. Chem. 251: 3375–3380.

    Google Scholar 

  • Reimann EM (1986) Conversion of bovine cardiac adenosine cyclic 3’,5’-phosphate dependent protein kinase to a heterodimer by removal of 45 residues at the N-terminus of the regulatory subunit. Biochemistry 25: 119–125

    Article  PubMed  CAS  Google Scholar 

  • Riabowol KT, Fink JS, Gilman MZ, Walsh DA, Goodman RH, Feramisco JR (1988) The catalytic subunit of cAMP-dependent protein kinase induces expression of genes containing cAMP-responsive enhancer elements. Nature 336: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Roesler WJ, Vandenbark GR, Hanson RW (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J. Biol. Chem. 263: 9063–9066

    Google Scholar 

  • Sandberg M, Natarajan V, Ronander I, Kalderon D, Walter U, Lohmann SM, Jahnsen T (1989) Molecular cloning and predicted full-length amino acid sequence of the type Iß isozyme of cGMP-dependent protein kinase from human placenta. Tissue distribution and developmental changes. FEBS Lett. 255: 321–329

    Google Scholar 

  • Sarkar D, Erlichman J, Rubin CS (1984) Identification of a calmodulin-binding protein that co-purifies with the regulatory subunit of brain protein kinase II. J. Biol. Chem. 259: 9840–9846

    Google Scholar 

  • Schoumacher RA, Shoemaker RL, Halm DR, Tallant EA, Wallace RW, Frizzell RA (1987) Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330: 752–754

    Article  PubMed  CAS  Google Scholar 

  • Scott JD, Glaccum MB, Zoller M;i, Uhler MD, Helfman DM, McKnight GS, Krebs EG (1987) The molecular cloning of a type II regulatory subunit of the cAMPdependent protein kinase from rat skeletal muscle and mouse brain. Proc. Natl. Acad. Sci. USA 84: 5192–5196

    Google Scholar 

  • Shabb JB, Granner DK (1988) Separation of topoisomerase I activity from the regulatory subunit of type II cyclic adenosine monophosphate-dependent protein kinase. Mol. Endocrinol. 2: 324–331

    Google Scholar 

  • Shirakawa F, Chedid M, Suttles J, Pollok BA, Mizel SB (1989) Interleukin 1 and cyclic AMP induce k immunoglobin light-chain expression via activation of an NF-kBlike DNA- binding protein. Mol. Cell. Biol. 9: 959–964

    Google Scholar 

  • Shoji S, Parmelee DC, Wade RD, Kumar S, Ericsson LH, Walsh KA, Neurath H, Long GL, Demaille JG, Fischer EH, Titani K (1981) Complete amino acid sequence of the catalytic subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci., USA 78: 848–851

    Google Scholar 

  • Simon M-N, Driscoll D, Mutzel R, Part D, Williams 3, Veron M (1989) Overproduction of the regulatory subunit of the cAMP-dependent protein kinase blocks the differentiation of Dictyostelium discoideum. EMBO J. 8: 2039–2043

    PubMed  CAS  Google Scholar 

  • Titani K, Sasagawa T, Ericsson LH, Kumar S, Smith SB, Krebs EG, Walsh KA (1984) Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3, 5-phosphate dependent protein kinase. Biochemistry 23: 4193–4199

    CAS  Google Scholar 

  • Tsukada T, Fink JS, Mandel G, Goodman RH (1987) Identification of a region in the human vasoactive intestinal peptide gene responsible for regulation by cyclic AMP. J.Biol. Chem. 262: 8743–8747

    Google Scholar 

  • Uhler MD, Carmichael DF, Lee DC, Chrivia JC, Krebs EG, McKnight GS (1986) Isolation of cDNA clones coding for the catalytic subunit of mouse cAMPdependent protein kinase. Proc. Natl. Acad. Sci. USA 83: 1300–1304

    Google Scholar 

  • Uhler MD, Chrivia JC, McKnight GS (1986) Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 261: 15360–15363

    Google Scholar 

  • Weber W, Hilz H (1979) Stoichiometry of cAMP binding and limited proteolysis of protein kinase regulatory subunits R-I and R-II. Biochem. Biophys. Res. Commun. 90: 1073–1081

    Google Scholar 

  • Wernet W, Flockerzi V, Hofmann F (1989) The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett. 251: 191–196

    Article  PubMed  CAS  Google Scholar 

  • Wu JC, Wang JH (1989) Sequence-selective DNA binding to the regulatory subunit of cAMP-dependent protein kinase. J. Biol. Chem. 264: 9989–9993

    Google Scholar 

  • Yamamoto KK, Gonzalez GA, Biggs III WH, Montminy MR (1988) Phosphorylationinduced binding and transcriptional efficiency of nuclear factor CREB. Nature 334: 494–498

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meinecke, M., Büchler, W., Fischer, L., Lohmann, S.M., Walter, U. (1990). cAMP-Dependent Protein Kinase: Subunit Diversity and Functional Role in Gene Expression. In: Jeserich, G., Althaus, H.H., Waehneldt, T.V. (eds) Cellular and Molecular Biology of Myelination. NATO ASI Series, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83968-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83968-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83970-2

  • Online ISBN: 978-3-642-83968-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics