The Contribution of Discoglossus pictus Fertilization in the Study of Amphibian Sperm-Egg Interaction

  • C. Campanella
  • R. Talevi
  • R. Gualtieri
  • P. Andreuccetti
Part of the NATO ASI Series book series (volume 45)


We have here raised the following questions which deserve attention in the study of amphibian fertilization: 1. How do sperm acquire motility and what is the action of the jelly coat on sperm; 2. What are the egg surface properties that unable sperm fusion; 3. How is a localized stimulus transmitted to the rest of the egg; 4. What is the role of cortical organelles at activation; 5. How is excess of sperm entrance avoided. Fertilization in Discoglossus pictus may contribute to the understanding of these mechanisms.


Amphibians gametes fertilization Discoglossus pictus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arion D, Mejier L, Brizuela L, Beach D (1988) CDC2 is a component of the M phase-specific histone Hl kinase: evidence for identity with MPF. Cell 55:371–378PubMedCrossRefGoogle Scholar
  2. Bernent WM, Capco DG (1989) Activators of protein kinase C triggers cortical granule exocytosis, cortical contraction, and furrow formation in Xenopus oocytes and eggs. J Cell Biol 108:885–892CrossRefGoogle Scholar
  3. Berridge MJ (1988) Inositol triphosphate-induced membrane potential oscillations in Xenopus oocytes. J Physiol 403:589–599PubMedGoogle Scholar
  4. Bracci Laudiero L, Gualtieri R, Andreuccetti P Possible role of the smooth endoplasmic reticulum during the early stages of development in the painted frog Discoglossus pictus (Anura). In press on Acta Embr Morph Exp nsGoogle Scholar
  5. Busa WB, Nuccitelli R (1985) An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog Xenopus laevis. J Cell Biol 100:1325–1329PubMedCrossRefGoogle Scholar
  6. Busa WB, Ferguson JE, Joseph SK, Williamson JR, Nuccitelli R (1985) Activation of frog (Xenopus laevis) eggs by inositol triphosphate. I. Characterization of Ca2+ release from intracellular stores. J Cell Biol 101:677–682PubMedCrossRefGoogle Scholar
  7. Campanella C, Andreuccetti P, (1977) Ultrastructural observation on the cortical and subcortical endoplasmic reticulum and on residual cortical granules in the egg of Xenopus laevis. Dev Biol 56:1–10PubMedCrossRefGoogle Scholar
  8. Campanella C (1975) The site of spermatozoon entrance in the unfertilized egg of Discoglossus pictus (Anura): an electron microscope study. Biol Reprod 12:439–447CrossRefGoogle Scholar
  9. Campanella C, Gabbiani G (1979) Motile properties and localization of contractile proteins in the spermatozoon of Discoglossus pictus. Gamete Res 2:163–175CrossRefGoogle Scholar
  10. Campanella C, Gabbiani G (1980) Cytoskeletal and contractile proteins in coelomic oocytes, unfertilized and fertilized eggs of Discoglossus pictus (Anura). Gamete Res 3:99–114CrossRefGoogle Scholar
  11. Campanella C, Rungger-Brandle E, Gabbiani G (1982) Immunolocalization of alfa-actinin in an amphibian egg (Discoglossus pictus). In “Embryonic Development” Part B: Cellular Aspects (M Burger and R Weber eds), 45–53. Alan Liss New YorkGoogle Scholar
  12. Campanella C, Andreuccetti P, Taddei C, Talevi R (1984) The modifications of the cortical endoplasmic reticulum during “in vitro” maturation of Xenopus laevis oocytes and its involvment in cortical granules exocytosis. J Exp Zool 229:283–294PubMedCrossRefGoogle Scholar
  13. Campanella C, Talevi R, Atripaldi U, Quaglia L (1986) The cortical endoplasmic reticulum and its possible role in activation of Discoglossus pictus (Anura) egg. In “Molecular and Cellular Biology of Fertilization” (JL Hedrick eds) Plenum Press New YorkGoogle Scholar
  14. Campanella C, Kline D, Nuccitelli R (1988) The cortical reaction in the egg of Discoglossus pictus: Changes in the cisternae clusters at activation. In “Cell Interactions and Differentiation” (G Ghiara eds) University of NaplesGoogle Scholar
  15. Campanella C, Talevi R, Kline D, Nuccitelli R (1988) The cortical reaction in the egg of Discoglossus pictus: A study of the changes in the endoplasmic reticulum at activation. Dev Biol 130:108–119PubMedCrossRefGoogle Scholar
  16. Campanella C, Chaponnier C, Quaglia L, Gualtieri R, Gabbiani G Different cytoskeletal organization in two maturation stages of Discoglossus pictus (Anura) oocytes: Thickness and stability of actin microfilaments and tropomyosin immunolocalization. In press on Gamete ResGoogle Scholar
  17. Campanella C, Carotenuto R, Gabbiani G Anti-spectrin antibodies stain the oocyte nucleus and the site of fertilization channels in the egg of Discoglossus pictus (Anura). Submitted to Gamete ResGoogle Scholar
  18. Charbonneau M, Dufresne-Dubé, Guerrier P (1986) Inhibition of the activation reaction of Xenopus laevis eggs by the lectins WGA and SBA. Dev Biol 114:347–360CrossRefGoogle Scholar
  19. Charbonneau M, Grey RD, Baskin RJ, Thomas D (1986) A freeze-fracture study of the cortex of Xenopus laevis eggs. Dev Growth Differ 28(l):75–84CrossRefGoogle Scholar
  20. Christensen K, Sauterer R, Merriam RW (1984) Role of soluble myosin in cortical contractions of Xenopus eggs. Nature 310:150–151PubMedCrossRefGoogle Scholar
  21. Corwin HL, Hartwig JH (1983) Isolation of actin-binding protein and villin from toad oocytes. Dev Biol 99:61–74PubMedCrossRefGoogle Scholar
  22. Dale B, De Felice U, Ehrenstein G (1985) Injection of a soluble sperm fraction into sea-urchin eggs triggers the cortical reaction. Experientia 41:1068–1070PubMedCrossRefGoogle Scholar
  23. Dale B, Talevi R (1989) Distribution of ion channels in ascidian eggs and zygotes. Exp Cell Res 181:238–244PubMedCrossRefGoogle Scholar
  24. Del Pino EJ, Cabada MO (1987) Lectin binding sites in the vitelline envelope of Bufo arenarum oocytes: Role in fertilization. Gamete Res 17:333–342PubMedCrossRefGoogle Scholar
  25. Denis-Donini S, Campanella C (1977) Ultrastructural and lectin binding changes during the formation of the animal dimple in oocytes of Discoglossus pictus (Anura). Dev Biol 61:140–152PubMedCrossRefGoogle Scholar
  26. Dictus WJAG, Van Zoelen EJJ, Tetteroo PAT, Tertoolen LG, De Laat SW, Bluemink JG (1985) Lateral mobility of plasma membrane lipids in Xenopus laevis eggs: Regional differences related to animal/vegetal polarity become extreme upon fertilization. Dev Biol 101:201–211CrossRefGoogle Scholar
  27. Dunphy WG, Brizuela L, Beach D, Newport J (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54:423–431PubMedCrossRefGoogle Scholar
  28. Elinson RP (1973) Fertilization of frog body cavity eggs enhanced by treatment affecting the vitelline coat. J Exp Zool 183:291–302CrossRefGoogle Scholar
  29. Elinson RP (1986) Fertilization in amphibians: The ancestry of the block to polispermy. Intern Rev Cytol 101:59–100CrossRefGoogle Scholar
  30. Elinson RP (1987) Fertilization and aqueous development of the puerto rican terrestrial breeding frog. Eleutherodactylus coqui. J Morph 193:217–224CrossRefGoogle Scholar
  31. Gabers D, Bentley JK, Dangott LI, Ramarao CS, Shimomura H, Suzuki N, Thorpe D (1986) Peptides associated with eggs: mechanism of interaction with spermatozoa. In “The Molecular and Cellular Biology of Fertilization” pp 315–357. JL Hedrick eds Plenum Publ CorpCrossRefGoogle Scholar
  32. Gall L, Picheral B, Gounon P (1983) Cytochemical evidence for the presence of intermediate filaments and microfilaments in the egg of Xenopus laevis. Biol Cell 47:331–342Google Scholar
  33. Gardiner MD, Grey RD (1983) Membrane junctions in Xenopus eggs: Their distribution suggests a role in calcium regulation. J Cell Biol 96:1159–1163PubMedCrossRefGoogle Scholar
  34. Gautier J, Norbury C, Lohka M, Nurse P, Maller J (1988) Purified Maturation-Promoting Factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2. Cell 54:433–439PubMedCrossRefGoogle Scholar
  35. Ghiara G (1960) Ricerche intorno alla struttura microscopica, submicroscopica ed istochimica ed alle funzioni degli involucri ovulari di Discoglossus pictus Otth e di altre specie di Anfibi. Arch Zool Ital 45:9–92Google Scholar
  36. Grandin N, Charbonneau M (1989) Intracellular pH and the increase in protein synthesis accompanying activation or stimulation by weak bases in Xenopus eggs. (submitted)Google Scholar
  37. Greve LC, Hedrick JL (1978) An immunocytochemical localization of the cortical granule lectin in the fertilized and unfertilized eggs of Xenopus laevis. Gamete Res 1:44–61CrossRefGoogle Scholar
  38. Grey RD, Wolf DP, Hedrick JL (1974) Formation and structure of the fertilization envelope in Xenopus laevis. Dev Biol 36:44–61PubMedCrossRefGoogle Scholar
  39. Grey RD, Working PK, Hedrick JL (1977) Alteration of structure and penetrability of the vitelline envelope after passage of eggs from coelom to oviduct in Xenopus laevis. J Exp Zool 219:87–95Google Scholar
  40. Gualtieri R, Andreuccetti P, Cafiero G (1988) Cell surface changes during oocyte maturation in Discoglossus pictus (Anura). Eur J Cell Biol 47(23)Google Scholar
  41. Gualtieri R, Cafiero G, Andreuccetti P (1989) plasma membrane domains and the site of sperm entrance in Discoglossus pictus (Anura) eggs. Dev. Growth Diff31(5):511–517CrossRefGoogle Scholar
  42. Gualtieri R, Cafiero G, Andreuccetti P Surface and cortex regionalization during “in vivo” maturation in Discoglossus pictus (Anura) oocytes. In press.Google Scholar
  43. Hibbard H (1928) Contribution a’ l’etude de l’ovogenese, de la fecondation et de l’histogenese chez Discoglossus pictus Otth. Arch Biol 32:251–326Google Scholar
  44. Hoshi M (1984) Roles of sperm fucosidases and proteases in the ascidian fertilization. In “Advances in Invertebrate Reproduction” 3. Elsevier Sci Publ BVGoogle Scholar
  45. Ishihara K, Konosono J, Kanatani H, Katagiri C (1984) Toad egg-jelly as a source of divalent cations essential for fertilization. Dev Biol 105:435–442PubMedCrossRefGoogle Scholar
  46. Iwao Y (1989) An electrically mediated block to polyspermy in the primitive urodele Hynobius nebulosus and phylogenetic comparison with other amphibians. Dev Biol 134:438–445PubMedCrossRefGoogle Scholar
  47. Iwao Y, Jaffe LA (1989) Evidence that the voltage-dependent component in the fertilization process is contributed by the sperm. Dev Biol 134:446–451PubMedCrossRefGoogle Scholar
  48. Katagiri C (1973) Chemical analysis of toad egg-jelly in relation to its sperm-capacitating activity. Dev Growth Differ 15(2):81–92CrossRefGoogle Scholar
  49. Katagiri (1974) A high frequency of fertilization in premature and mature coelomic toad eggs after enzymic removal of vitelline membrane. J Embryol Exp Morphol 31:573–581PubMedGoogle Scholar
  50. Kessel RG (1985a) Annulatae lamellae (porous cytomembranes): With particular emphasis on their possible role in differentiation of the female gamete. In “Developmental Biology: A Comprehensive Synthesis”, 1:179–232. Browder LW eds, Plenum Press New York and LondonGoogle Scholar
  51. Kline D (1988) Calcium-dependent events at fertilization of the frog egg: injection of a calcium buffer blocks ion channels opening, exocytosis and formation of pronuclei. Dev Biol 126:346–361PubMedCrossRefGoogle Scholar
  52. Kline D, Robinson KR, Nuccitelli R (1983) Ion currents and membrane domains in the cleaving Xenopus egg. J Cell Biol 97:1753–1761PubMedCrossRefGoogle Scholar
  53. Kline D, Simoncini L, Mandel G, Maue RA, Kado RT, Jaffe LA (1988) Fertilization events induced by neurotransmitters after injection of mRNA in Xenopus eggs. Science 241:464–467PubMedCrossRefGoogle Scholar
  54. Kubota HY, Yoshimoto Y, Yoneda M, Hiramoto Y (1987) Free calcium wave upon activation in Xenopus eggs. Dev Biol 119:129–136PubMedCrossRefGoogle Scholar
  55. Labbe’ JC, Picard A, Karsenti E, Doree M (1988) An M-Phase-specific protein kinase of Xenopus oocytes: Partial purification and possible mechanism of its periodic activation. Dev Biol 127:157–169CrossRefGoogle Scholar
  56. Larabell CA, Chandler DE (1988) Freeze-fracture analysis of structural reorganization during meiotic maturation in oocytes of Xenopus laevis. Cell Tissue Res 251:129–136PubMedCrossRefGoogle Scholar
  57. Lohka MJ, Hayes MK, Maller JL (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci USA 85:3009–3013PubMedCrossRefGoogle Scholar
  58. Macek MB, Shur BD (1988) Protein-carbohydrate complementarity in mammalian gamete recognition. Gamete Res 20:93–109PubMedCrossRefGoogle Scholar
  59. Mann T, Lutwak-Mann C, Hay MF (1963) A note on the so-called seminal vesicles of the frog Discoglossus pictus. Acta Embryol Morphol Exp 6:21–24Google Scholar
  60. Masui Y, Markert C (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–146PubMedCrossRefGoogle Scholar
  61. Mcintosh RP, Catt KJ (1987) Coupling of inositol phospholipid hydrolisis to peptide hormone receptors expressed from adrenal and pituitary mRNA in Xenopus laevis oocytes. Proc Natl Acad Sci USA 84:9045 – 9048PubMedCrossRefGoogle Scholar
  62. Miceli DC, Fernandez SN, Raisman JS, Barbieri DF (1978) A trypsin-like oviducal proteinase involved in Bufo arenarum fertilization. J Embryol Exp Morphol 48:79–91PubMedGoogle Scholar
  63. Miceli DC, Fernandez SN, Morero RD (1980) Effect of oviducal proteinase upon Bufo arenarum vitellin envelope. A fluorescence approach. Dev Growth Differ 22:639–643CrossRefGoogle Scholar
  64. Nuccitelli R, Kline D, Busa W, Talevi R, Campanella C (1988) A highly localized activation current yet widespread intracellular calcium increase in the egg of the frog. Discoglossus pictus. Dev Biol 130:120–132PubMedCrossRefGoogle Scholar
  65. Oikawa T, Sendai Y, Kurata S, Yanagimachi (1988) A glycoprotein of oviducal origin alters biochemical properties of the zona pellucida of hamster egg. Gamete Res 19:113–122PubMedCrossRefGoogle Scholar
  66. Palecek J, Ubbels GA, Macha J (1982) An immunocytochemical method for the visualization of tubulin-containing structures in the egg of Xenopus laevis. Histochemistry 76:527–538PubMedCrossRefGoogle Scholar
  67. Parker I, Miledi R (1986) Changes in intracellular calcium and in membrane currents evoked by injection of inositol triphosphate into Xenopus oocytes. Proc R Soc Lond 228:307–315PubMedCrossRefGoogle Scholar
  68. Pitari G, Dupré S, Amore F, Talevi R, Campanella C (1987) Ruolo dei ponti disolfuro nella dissoluzione delle gelatine nelle uova di anfibio. Atti XXXV Congresso SIB, Brescia-Gardone.Google Scholar
  69. Takamune K, Yoshizaki N, Katagiri Ch (1986) Oviducal pars recta-induced degradation of vitelline coat proteins in relation to acquisition of fertilizability of toad eggs. Gamete Res 14:215–224CrossRefGoogle Scholar
  70. Talevi R (1989) Polyspermic eggs in the anuran Discoglossus pictus develop normally. Development 105:343–349Google Scholar
  71. Talevi R, Dale B, Campanella C (1985) Fertilization and activation potential in Discoglossus pictus (Anura) eggs: A delayed response to activation by pricking. Dev Biol 111:316–323CrossRefGoogle Scholar
  72. Talevi R, Campanella C (1988) Fertilization in Discoglossus pictus (Anura) l.Sperm-egg interactions in distinct regions of the dimple and occurrence of a late stage of sperm penetration. Dev Biol 130:524–535PubMedCrossRefGoogle Scholar
  73. Talevi R, Dale B (1986) Electrical characteriscs of ascidian egg fragments. Exp Cell Res 162:539–543PubMedCrossRefGoogle Scholar
  74. Tang P, Sharpe CR, Mohun TJ, Wylie (1988) Vimentin expression in oocytes,eggs and early embryos of Xenopus laevis. Development 103:278–287Google Scholar
  75. Volpe P, Krause KH, Hashimoto S, Zorzato F, Pozzan T, Meldolesi, J, Lew DP (1988) “Calciosome” a cytoplasmic organelle: The inositol 1,4,5 triphosphate-sensitive Ca2+ store of non-muscle cells? Proc Natl Acad Sci USA 85:1091–1095PubMedCrossRefGoogle Scholar
  76. Yamasaki H, Takamune K, Katagiri C (1988) Classification, inhibition, and specificity studies of the vitelline coat lysin from toad sperm. Gamete Res 20:287–300PubMedCrossRefGoogle Scholar
  77. Ward GE, Brokaw CJ, Gabers DL, Vacquier VD (1985) Chemotaxis of Arbada punctulata spermatozoa to resact, a peptide from the egg jelly layer. J Cell Biol 101:2324–2329PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • C. Campanella
    • 2
  • R. Talevi
    • 1
  • R. Gualtieri
    • 1
  • P. Andreuccetti
    • 1
  1. 1.Dipartimento di Biologia Evolutiva e ComparataNapoliItaly
  2. 2.Dipartimento di Scienze e Tecnologie Biomediche e di BiometriaL’AquilaItaly

Personalised recommendations