Skip to main content

The Cytoskeleton During Pollen Tube Growth and Sperm Cell Formation

  • Conference paper
Mechanism of Fertilization: Plants to Humans

Part of the book series: NATO ASI Series ((ASIH,volume 45))

Abstract

Angiosperm plants produce flowers in which their reproductive development occurs. In flowering plants and other groups of plants a diploid generation (sporophyte) alternates with a haploid generation (gametophyte). In angiosperms the male and female gametophytes are reduced to microscopic structures that are dependent, for their development, on the tissue of the sporophyte. The flower contains specialized structures, the anthers and pistil or gyneaceum, in which the male and female gametophytes are formed. The functions of the gametophytes are the production of the male sperm cells and the female egg cell, and their fusion in the fertilization. The male gametophyte completes its development in the anthers. In flowering plants, the pollen grain is the male gametophyte and the embryo sac is the female one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Condeelis J.S. (1974) The identification of F-actin in the pollen tube and protoplast of Amaryllis belladonna. Exp Cell Res 88:435–438

    Article  PubMed  CAS  Google Scholar 

  • Cresti m, Ciampolini F, Kapil RN (1984) Generative cells of some angiosperms with particular emphasis on their microtubules. J Submicrosc Cytol 16:317–326

    Google Scholar 

  • Cresti M, Hepler PK, Tiezzi A, Ciampolini F (1986a) Fibrillar structures in Nicotiana pollen: changes in ultrastructure during pollen activation and tube emission. In: Biotechnology and ecology of pollen (Mulcahy DL, Mulcahy GB, Ottaviano E eds) pp 283–288, Springer-Verlag, Berlin, Heidelberg, N.Y.

    Chapter  Google Scholar 

  • Cresti M, Tiezzi A, Moscatelli A (1986b) Pollen and pollen tube cytoskeleton. In: Genetic and cellular engineering of plants and microorganisms important for agriculture (Magnien E ed) pp 86–88, Commission of the European Communities, Louvain-La-Neuve

    Google Scholar 

  • Cresti M, Lancelle SA, Hepler PK (1987) Structure of the generative cell wall complex after freeze-substitution in pollen tubes of Nicotiana and Impatiens. J Cell Sci 88:373–378

    Google Scholar 

  • Cresti M, Tiezzi A (1989) Germination and pollen tube formation. In: Microsporogenesis: ontogeny and evolution (Knox RB, Blackmore S eds) Academic Press, In press

    Google Scholar 

  • Cresti M, Murgia M, Theunis CH (1989) Microtubules organization in sperm cells in the pollen tubes of Brassica oleracea L. Protoplasma, In press

    Google Scholar 

  • Derksen J, Pierson ES, Trass JA (1985) Microtubules in vegetative and generative cells of pollen tubes. Eur J Cell Biol 38:142–148

    Google Scholar 

  • Ducket JG, Bell PR (1971) Studies on fertilization in archegoniate plants. Changes in the structure of the spermatozoids Pteridium aquilinum L. Kuhn during Cytobiology 4:421–426

    Google Scholar 

  • Franke WW, Herth W, Van der Woude JW, Morrè JD (1972) Tubular and filamentous structures in pollen tube: possilbe involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105:317–341

    Article  Google Scholar 

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Ann Rev Plant Physiol 36:397–439

    Article  CAS  Google Scholar 

  • Herth W (1978) Ionophore A 23187 stops tip growth, but not cytoplasmic streaming in the pollen tubes of Lilium longiflorum. Protoplasma 96:275

    Article  CAS  Google Scholar 

  • Heslop-Harrison JS, Heslop-Harrison J, Heslop-Harrison Y, Reger BJ (1985) The distribution of calcium in the grass pollen tube. Proc R Soc Lond B 225:315–327

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Ciampolini F (1986) Actin during pollen germination. J Cell Sci 86:1–8

    CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1987) An analysis of gamete and organelle movement in the pollen tube of Secale cereale L. Plant Science 51:203–213

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1988a) Organelle movement and fibrillar elements of the cytoskeleton in the angiosperm pollen tube. Sex Plant Reprod 1:16–24

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1988b) Sites of origin of the peripheral microtubule system of the vegetative cell of the angiosperm pollen tube. Ann Bot 62:455–461

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Moscatelli A (1988) Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J Cell Sci 91:49–60

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1989) Actomyosin and movement in the angiosperm pollen tube: and interpretation of some recent results. Sex Plant Reprod, in press

    Google Scholar 

  • Jaffe LA, Weisenseel MH, Jaffe LF (1975) Calcium accumulations within the growing tips of pollen tubes. J Cell Biol 67:488–492

    Article  PubMed  CAS  Google Scholar 

  • Johnston GW (1941) Cytological studies on male gamete formation in certain angiosperms. Amer J Bot 28:306–319

    Article  Google Scholar 

  • Karas I, Cass DD (1976) Ultrastructural aspects of sperm formation in rye: evidence for cell plate involvement in generative cell division. Phytomorphology 26:36–45

    Google Scholar 

  • Kohno T, Shimmen T (1987) Ca2+ induced F-actin fragmentation in pollen tubes. Protoplasma 141:177–179

    Article  CAS  Google Scholar 

  • Kohno T, Shimmen T (1988) Mechanism of Ca2 + inhibition of cytoplasmic streaming in Lily pollen tubes. J Cell Sci 91:501–509

    Google Scholar 

  • Keijzer CJ, Wilms HJ, Mogensen HL (1988) Sperm cell research: the current status and application for plant breeding. In: Plant sperm cells as tools for biotechnology (Wilms HJ, Keijzer CJ eds) Pudoc Wageningen pp 3–8

    Google Scholar 

  • Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of cytoskeleton in freeze-substituted pollen tubes of Nicotiana alata. Protoplasma 140:141–150

    Article  Google Scholar 

  • Kuznetsov SA, Gelfand VI (1986) Bovine brain kinesine is a microtubule-activated ATPase. Proc Natl Acad Sci USA 83:8530–8534

    Article  PubMed  CAS  Google Scholar 

  • Lewandowska E, Charzynska M (1977) Tradescantia bracteata pollen in vitro: pollen tube development and mitosis. Acta Soc Bot Polon 46:587–597

    Google Scholar 

  • Li Y, Wang FH, Knox RB (1989) Ultrastructural analysis of the flagellar apparatus in sperm cells of Ginkgo biloba. Protoplasma 149:57–63

    Article  Google Scholar 

  • Mascarenhas JP (1989) The male gametophyte of flowering plants. The Plant Cell 1:657–664

    Article  PubMed  Google Scholar 

  • Mascarenhas JP, Lafountain J (1972) Protoplasmic streaming, cytochalasin B and the growth of the pollen tube. Tissue Cell 4:11–14

    Article  PubMed  CAS  Google Scholar 

  • McConchie CA, Russel SD, Dumas C, Tuohy M, Knox RB (1987) Quantitative cytology of the sperm cells of Brassica campestris and B. oleracea. Planta 170:446–452

    Article  Google Scholar 

  • Miki-Hirosige H, Nakamura S (1982) Process of metabolism during pollen tube wall formation. J Elect Microsc 31:51–62

    Google Scholar 

  • Moscatelli A, Tiezzi A, Vignani R, Cai G, Bartalesi A, Cresti M (1988) Presence of kinesin in Tobacco pollen tube. In: Sexual reproduction in higher plants (Cresti M, Pacini E, Gori P eds) pp 205–209, Springer-Verlag, Berlin, Heidelberg, N.Y., London, Paris

    Google Scholar 

  • Norstog K (1975) The motility of cycad spermatozoids in relation to structure and function. In: The biology of the male gamete (Duckett JG, Racey PA eds) pp 135–142 Academic Press, London

    Google Scholar 

  • O’Mara J (1933) Mechanism of mitosis in pollen tubes. Bot Gaz 102:629–636

    Google Scholar 

  • Ota T (1957) Division of the generative cell in the pollen tube. Cytologia 22:15–27

    Article  Google Scholar 

  • Palevitz BA, Cresti M (1988) Microtubule organization in the sperm of Tradescantia virginiana. Protoplasma 146:28–34

    Article  Google Scholar 

  • Palevitz BA, Cresti M (1989) Cytoskeletal changes during generative cell division and sperm formation in Tradescantia virginiana. Protoplasma 150:54–71

    Article  Google Scholar 

  • Parthasarathy MV, Perdue TD, Witztum A, Alvernaz J (1985) Actin network as a normal component of the cytoskeleton in many vascular plant cells. Amer J Bot 72:1318–1323

    Article  Google Scholar 

  • Perdue TD, Parthasarathy MV (1985) In situ localization of F-actin in pollen tube. Europ J Cell Biol 39:13–20

    Google Scholar 

  • Pierson ES, Derksen J, Traas JA (1986) Organization of microfilaments and microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur J Cell Biol 41:14–18

    Google Scholar 

  • Pierson ES (1988) Rhodamine-phalloidin staining of F-actin in pollen after dimethylsulphoxide permeabilization. A comparison with the conventional formaldehyde preparation. Sex Plant Reprod 1:83–87

    Article  Google Scholar 

  • Pierson ES, Kengen HMP, Derksen J (1989) Microtubules and actin filaments co-localize in pollen tubes of Nicotiana tabacum L and Lilium longiflorum Thunb. Protoplasma 150:75–77

    Article  Google Scholar 

  • Polito V (1983) Membrane-associated calcium during pollen grain germination: a microfluorometric analysis. Protoplasma 117:226–232

    Article  CAS  Google Scholar 

  • Raudaskoski M, Astrom H, Perttila K, Virtanen I, Louhelainen J (1987) Role of the microtubule cytoskeleton in pollen tubes: an immunocytochemical and ultrastructural approach. Biol Cell 61:177–188

    Google Scholar 

  • Reiss HD, Herth W (1978) Visualization of Ca2+ gradient in growing pollen tubes of Lilium longiflorum with chlorotetracycline fluorescence. Protoplasma 97:373–377

    Article  Google Scholar 

  • Reiss HD, Herth W, Nobling R (1985) Development of membrane and calcium-gradients during pollen germination of Lilium longiflorum. Planta 163:84–90

    Article  CAS  Google Scholar 

  • Russell SD (1985) Preferential fertilization in Plumbago: ultrastructural evidence for gamete-level recognition in an angiosperm. Proc Natl Acad Sci USA 82:6129–6132

    Article  PubMed  CAS  Google Scholar 

  • Sax K, O’Mara J (1941) Mechanism of mitosis in pollen tubes. Bot Gaz 102:629–636

    Article  Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry, management. Springer-Verlag, NY

    Google Scholar 

  • Steer MW (1988) Calcium control of pollen tube tip growth. Biol Bull 176S:18–20

    Google Scholar 

  • Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111:323–358

    Article  Google Scholar 

  • Tang X, Hepler PK, Scordilis SP (1989) Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana pollen tubes. J Cell Sci 92:569–574

    PubMed  CAS  Google Scholar 

  • Tiezzi A, Cresti M, Ciampolini F (1986) Microtubules in Nicotiana pollen tubes: ultrastructure, immunofluorescence and biochemical data. In: Biology of reproduction and cell motility in plants and animals (Cresti M, Dallai R eds) pp 87–94, University of Siena, Siena

    Google Scholar 

  • Tiezzi A, Moscatelli A, Milanesi C, Ciampolini F, Cresti M (1987) Taxol-induced structures derived from cytoskeletal elements of Nicotiana pollen tube. J Cell Sci 88:657–661

    Google Scholar 

  • Tiezzi A, Moscatelli A, Cresti M (1988a) Taxol-induced microtubules from different sources: an ultrastructural comparison. J Submicrosc Cytol Pathol 20:613–617

    PubMed  CAS  Google Scholar 

  • Tiezzi A, Moscatelli A, Ciampolini F, Milanesi C, Murgia M, Cresti M (1988b) The cytoskeletal apparatus of the generative cell in several angiosperm species. In: Sexual reproduction in higher plants (Cresti M, Pacini E, Gori P eds) pp 215–220, Springer-Verlag, Berlin, Heidelberg, NY, London, Paris

    Google Scholar 

  • Tiezzi A, Moscatelli A, Murgia M, Russell SD, Del Casino C, Bartalesi A, Cresti M (1989) Immunofluorescence studies on microtubules in the male gamete of Hyacinthus orientalis and Nicotiana tabacum using confocal scanning laser microscopy. Sperm Cell Club Meeting, 8–12 June, Budapest, Hungary (in press)

    Google Scholar 

  • Tiwari SC, Polito VS (1988a) Spatial and temporal organization of actin during hydration, activation and germination of pollen in Pryus communis L.: a population study. Protoplasma 147:5–15

    Article  Google Scholar 

  • Tiwari SC, Polito VS (1988b) Organization of the cytoskeleton in pollen tubes of Pyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence and Rhodamine-Phalloidin. Protoplasma 147:100–112

    Article  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  • Vale RD (1987) Intracellular transport using microtubules-based motors. Ann Rev Cell Biol 3:347–378

    Article  PubMed  CAS  Google Scholar 

  • Vallee RB, Wall JS, Paschal BR, Shpetner HS (1988) Microtubules associated protein 1C from Brain is a two-headed cytosolic dynein. Nature 332:561–563

    Article  PubMed  CAS  Google Scholar 

  • Van der Woude WJ, Morrè DJ (1968) Endoplasmic reticulum-dictyosome-secretory vesicle associations in pollen tubes of Lilium longiflorum Thunb. Proc Indian Acad Sci 77:164–170

    Google Scholar 

  • Van Lammeren AAM, Keijzer CJ, Willemse MTM, Kieft H (1985). Structure and function of the microtubular cytoskeleton during pollen development in Gasteria verucosa (Mill) H Duval. Planta 165:1–11

    Article  Google Scholar 

  • Wagner VT, Murgia M, Ciampolini F, Milanesi C, Tiezzi A, Cresti M (1989) Generative cell cytoskeleton of Hyacinthus oritentalis. Submitted for pubblication

    Google Scholar 

  • Weisenseel MHR, Nuccitelli R, Jaffe LF (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiezzi, A., Cresti, M. (1990). The Cytoskeleton During Pollen Tube Growth and Sperm Cell Formation. In: Dale, B. (eds) Mechanism of Fertilization: Plants to Humans. NATO ASI Series, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83965-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83965-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83967-2

  • Online ISBN: 978-3-642-83965-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics