The Cytoskeleton During Pollen Tube Growth and Sperm Cell Formation

  • A. Tiezzi
  • M. Cresti
Conference paper
Part of the NATO ASI Series book series (volume 45)


Angiosperm plants produce flowers in which their reproductive development occurs. In flowering plants and other groups of plants a diploid generation (sporophyte) alternates with a haploid generation (gametophyte). In angiosperms the male and female gametophytes are reduced to microscopic structures that are dependent, for their development, on the tissue of the sporophyte. The flower contains specialized structures, the anthers and pistil or gyneaceum, in which the male and female gametophytes are formed. The functions of the gametophytes are the production of the male sperm cells and the female egg cell, and their fusion in the fertilization. The male gametophyte completes its development in the anthers. In flowering plants, the pollen grain is the male gametophyte and the embryo sac is the female one.


Pollen Tube Sperm Cell Pollen Tube Growth Female Gametophyte Male Gametophyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Condeelis J.S. (1974) The identification of F-actin in the pollen tube and protoplast of Amaryllis belladonna. Exp Cell Res 88:435–438PubMedCrossRefGoogle Scholar
  2. Cresti m, Ciampolini F, Kapil RN (1984) Generative cells of some angiosperms with particular emphasis on their microtubules. J Submicrosc Cytol 16:317–326Google Scholar
  3. Cresti M, Hepler PK, Tiezzi A, Ciampolini F (1986a) Fibrillar structures in Nicotiana pollen: changes in ultrastructure during pollen activation and tube emission. In: Biotechnology and ecology of pollen (Mulcahy DL, Mulcahy GB, Ottaviano E eds) pp 283–288, Springer-Verlag, Berlin, Heidelberg, N.Y.CrossRefGoogle Scholar
  4. Cresti M, Tiezzi A, Moscatelli A (1986b) Pollen and pollen tube cytoskeleton. In: Genetic and cellular engineering of plants and microorganisms important for agriculture (Magnien E ed) pp 86–88, Commission of the European Communities, Louvain-La-NeuveGoogle Scholar
  5. Cresti M, Lancelle SA, Hepler PK (1987) Structure of the generative cell wall complex after freeze-substitution in pollen tubes of Nicotiana and Impatiens. J Cell Sci 88:373–378Google Scholar
  6. Cresti M, Tiezzi A (1989) Germination and pollen tube formation. In: Microsporogenesis: ontogeny and evolution (Knox RB, Blackmore S eds) Academic Press, In pressGoogle Scholar
  7. Cresti M, Murgia M, Theunis CH (1989) Microtubules organization in sperm cells in the pollen tubes of Brassica oleracea L. Protoplasma, In pressGoogle Scholar
  8. Derksen J, Pierson ES, Trass JA (1985) Microtubules in vegetative and generative cells of pollen tubes. Eur J Cell Biol 38:142–148Google Scholar
  9. Ducket JG, Bell PR (1971) Studies on fertilization in archegoniate plants. Changes in the structure of the spermatozoids Pteridium aquilinum L. Kuhn during Cytobiology 4:421–426Google Scholar
  10. Franke WW, Herth W, Van der Woude JW, Morrè JD (1972) Tubular and filamentous structures in pollen tube: possilbe involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105:317–341CrossRefGoogle Scholar
  11. Hepler PK, Wayne RO (1985) Calcium and plant development. Ann Rev Plant Physiol 36:397–439CrossRefGoogle Scholar
  12. Herth W (1978) Ionophore A 23187 stops tip growth, but not cytoplasmic streaming in the pollen tubes of Lilium longiflorum. Protoplasma 96:275CrossRefGoogle Scholar
  13. Heslop-Harrison JS, Heslop-Harrison J, Heslop-Harrison Y, Reger BJ (1985) The distribution of calcium in the grass pollen tube. Proc R Soc Lond B 225:315–327CrossRefGoogle Scholar
  14. Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Ciampolini F (1986) Actin during pollen germination. J Cell Sci 86:1–8Google Scholar
  15. Heslop-Harrison J, Heslop-Harrison Y (1987) An analysis of gamete and organelle movement in the pollen tube of Secale cereale L. Plant Science 51:203–213CrossRefGoogle Scholar
  16. Heslop-Harrison J, Heslop-Harrison Y (1988a) Organelle movement and fibrillar elements of the cytoskeleton in the angiosperm pollen tube. Sex Plant Reprod 1:16–24Google Scholar
  17. Heslop-Harrison J, Heslop-Harrison Y (1988b) Sites of origin of the peripheral microtubule system of the vegetative cell of the angiosperm pollen tube. Ann Bot 62:455–461Google Scholar
  18. Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Moscatelli A (1988) Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J Cell Sci 91:49–60Google Scholar
  19. Heslop-Harrison J, Heslop-Harrison Y (1989) Actomyosin and movement in the angiosperm pollen tube: and interpretation of some recent results. Sex Plant Reprod, in pressGoogle Scholar
  20. Jaffe LA, Weisenseel MH, Jaffe LF (1975) Calcium accumulations within the growing tips of pollen tubes. J Cell Biol 67:488–492PubMedCrossRefGoogle Scholar
  21. Johnston GW (1941) Cytological studies on male gamete formation in certain angiosperms. Amer J Bot 28:306–319CrossRefGoogle Scholar
  22. Karas I, Cass DD (1976) Ultrastructural aspects of sperm formation in rye: evidence for cell plate involvement in generative cell division. Phytomorphology 26:36–45Google Scholar
  23. Kohno T, Shimmen T (1987) Ca2+ induced F-actin fragmentation in pollen tubes. Protoplasma 141:177–179CrossRefGoogle Scholar
  24. Kohno T, Shimmen T (1988) Mechanism of Ca2 + inhibition of cytoplasmic streaming in Lily pollen tubes. J Cell Sci 91:501–509Google Scholar
  25. Keijzer CJ, Wilms HJ, Mogensen HL (1988) Sperm cell research: the current status and application for plant breeding. In: Plant sperm cells as tools for biotechnology (Wilms HJ, Keijzer CJ eds) Pudoc Wageningen pp 3–8Google Scholar
  26. Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of cytoskeleton in freeze-substituted pollen tubes of Nicotiana alata. Protoplasma 140:141–150CrossRefGoogle Scholar
  27. Kuznetsov SA, Gelfand VI (1986) Bovine brain kinesine is a microtubule-activated ATPase. Proc Natl Acad Sci USA 83:8530–8534PubMedCrossRefGoogle Scholar
  28. Lewandowska E, Charzynska M (1977) Tradescantia bracteata pollen in vitro: pollen tube development and mitosis. Acta Soc Bot Polon 46:587–597Google Scholar
  29. Li Y, Wang FH, Knox RB (1989) Ultrastructural analysis of the flagellar apparatus in sperm cells of Ginkgo biloba. Protoplasma 149:57–63CrossRefGoogle Scholar
  30. Mascarenhas JP (1989) The male gametophyte of flowering plants. The Plant Cell 1:657–664PubMedCrossRefGoogle Scholar
  31. Mascarenhas JP, Lafountain J (1972) Protoplasmic streaming, cytochalasin B and the growth of the pollen tube. Tissue Cell 4:11–14PubMedCrossRefGoogle Scholar
  32. McConchie CA, Russel SD, Dumas C, Tuohy M, Knox RB (1987) Quantitative cytology of the sperm cells of Brassica campestris and B. oleracea. Planta 170:446–452CrossRefGoogle Scholar
  33. Miki-Hirosige H, Nakamura S (1982) Process of metabolism during pollen tube wall formation. J Elect Microsc 31:51–62Google Scholar
  34. Moscatelli A, Tiezzi A, Vignani R, Cai G, Bartalesi A, Cresti M (1988) Presence of kinesin in Tobacco pollen tube. In: Sexual reproduction in higher plants (Cresti M, Pacini E, Gori P eds) pp 205–209, Springer-Verlag, Berlin, Heidelberg, N.Y., London, ParisGoogle Scholar
  35. Norstog K (1975) The motility of cycad spermatozoids in relation to structure and function. In: The biology of the male gamete (Duckett JG, Racey PA eds) pp 135–142 Academic Press, LondonGoogle Scholar
  36. O’Mara J (1933) Mechanism of mitosis in pollen tubes. Bot Gaz 102:629–636Google Scholar
  37. Ota T (1957) Division of the generative cell in the pollen tube. Cytologia 22:15–27CrossRefGoogle Scholar
  38. Palevitz BA, Cresti M (1988) Microtubule organization in the sperm of Tradescantia virginiana. Protoplasma 146:28–34CrossRefGoogle Scholar
  39. Palevitz BA, Cresti M (1989) Cytoskeletal changes during generative cell division and sperm formation in Tradescantia virginiana. Protoplasma 150:54–71CrossRefGoogle Scholar
  40. Parthasarathy MV, Perdue TD, Witztum A, Alvernaz J (1985) Actin network as a normal component of the cytoskeleton in many vascular plant cells. Amer J Bot 72:1318–1323CrossRefGoogle Scholar
  41. Perdue TD, Parthasarathy MV (1985) In situ localization of F-actin in pollen tube. Europ J Cell Biol 39:13–20Google Scholar
  42. Pierson ES, Derksen J, Traas JA (1986) Organization of microfilaments and microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur J Cell Biol 41:14–18Google Scholar
  43. Pierson ES (1988) Rhodamine-phalloidin staining of F-actin in pollen after dimethylsulphoxide permeabilization. A comparison with the conventional formaldehyde preparation. Sex Plant Reprod 1:83–87CrossRefGoogle Scholar
  44. Pierson ES, Kengen HMP, Derksen J (1989) Microtubules and actin filaments co-localize in pollen tubes of Nicotiana tabacum L and Lilium longiflorum Thunb. Protoplasma 150:75–77CrossRefGoogle Scholar
  45. Polito V (1983) Membrane-associated calcium during pollen grain germination: a microfluorometric analysis. Protoplasma 117:226–232CrossRefGoogle Scholar
  46. Raudaskoski M, Astrom H, Perttila K, Virtanen I, Louhelainen J (1987) Role of the microtubule cytoskeleton in pollen tubes: an immunocytochemical and ultrastructural approach. Biol Cell 61:177–188Google Scholar
  47. Reiss HD, Herth W (1978) Visualization of Ca2+ gradient in growing pollen tubes of Lilium longiflorum with chlorotetracycline fluorescence. Protoplasma 97:373–377CrossRefGoogle Scholar
  48. Reiss HD, Herth W, Nobling R (1985) Development of membrane and calcium-gradients during pollen germination of Lilium longiflorum. Planta 163:84–90CrossRefGoogle Scholar
  49. Russell SD (1985) Preferential fertilization in Plumbago: ultrastructural evidence for gamete-level recognition in an angiosperm. Proc Natl Acad Sci USA 82:6129–6132PubMedCrossRefGoogle Scholar
  50. Sax K, O’Mara J (1941) Mechanism of mitosis in pollen tubes. Bot Gaz 102:629–636CrossRefGoogle Scholar
  51. Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry, management. Springer-Verlag, NYGoogle Scholar
  52. Steer MW (1988) Calcium control of pollen tube tip growth. Biol Bull 176S:18–20Google Scholar
  53. Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111:323–358CrossRefGoogle Scholar
  54. Tang X, Hepler PK, Scordilis SP (1989) Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana pollen tubes. J Cell Sci 92:569–574PubMedGoogle Scholar
  55. Tiezzi A, Cresti M, Ciampolini F (1986) Microtubules in Nicotiana pollen tubes: ultrastructure, immunofluorescence and biochemical data. In: Biology of reproduction and cell motility in plants and animals (Cresti M, Dallai R eds) pp 87–94, University of Siena, SienaGoogle Scholar
  56. Tiezzi A, Moscatelli A, Milanesi C, Ciampolini F, Cresti M (1987) Taxol-induced structures derived from cytoskeletal elements of Nicotiana pollen tube. J Cell Sci 88:657–661Google Scholar
  57. Tiezzi A, Moscatelli A, Cresti M (1988a) Taxol-induced microtubules from different sources: an ultrastructural comparison. J Submicrosc Cytol Pathol 20:613–617PubMedGoogle Scholar
  58. Tiezzi A, Moscatelli A, Ciampolini F, Milanesi C, Murgia M, Cresti M (1988b) The cytoskeletal apparatus of the generative cell in several angiosperm species. In: Sexual reproduction in higher plants (Cresti M, Pacini E, Gori P eds) pp 215–220, Springer-Verlag, Berlin, Heidelberg, NY, London, ParisGoogle Scholar
  59. Tiezzi A, Moscatelli A, Murgia M, Russell SD, Del Casino C, Bartalesi A, Cresti M (1989) Immunofluorescence studies on microtubules in the male gamete of Hyacinthus orientalis and Nicotiana tabacum using confocal scanning laser microscopy. Sperm Cell Club Meeting, 8–12 June, Budapest, Hungary (in press)Google Scholar
  60. Tiwari SC, Polito VS (1988a) Spatial and temporal organization of actin during hydration, activation and germination of pollen in Pryus communis L.: a population study. Protoplasma 147:5–15CrossRefGoogle Scholar
  61. Tiwari SC, Polito VS (1988b) Organization of the cytoskeleton in pollen tubes of Pyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence and Rhodamine-Phalloidin. Protoplasma 147:100–112CrossRefGoogle Scholar
  62. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50PubMedCrossRefGoogle Scholar
  63. Vale RD (1987) Intracellular transport using microtubules-based motors. Ann Rev Cell Biol 3:347–378PubMedCrossRefGoogle Scholar
  64. Vallee RB, Wall JS, Paschal BR, Shpetner HS (1988) Microtubules associated protein 1C from Brain is a two-headed cytosolic dynein. Nature 332:561–563PubMedCrossRefGoogle Scholar
  65. Van der Woude WJ, Morrè DJ (1968) Endoplasmic reticulum-dictyosome-secretory vesicle associations in pollen tubes of Lilium longiflorum Thunb. Proc Indian Acad Sci 77:164–170Google Scholar
  66. Van Lammeren AAM, Keijzer CJ, Willemse MTM, Kieft H (1985). Structure and function of the microtubular cytoskeleton during pollen development in Gasteria verucosa (Mill) H Duval. Planta 165:1–11CrossRefGoogle Scholar
  67. Wagner VT, Murgia M, Ciampolini F, Milanesi C, Tiezzi A, Cresti M (1989) Generative cell cytoskeleton of Hyacinthus oritentalis. Submitted for pubblicationGoogle Scholar
  68. Weisenseel MHR, Nuccitelli R, Jaffe LF (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • A. Tiezzi
    • 1
  • M. Cresti
    • 1
  1. 1.Dipartimento di Biologia AmbientaleUniversità degli Studi di SienaSienaItaly

Personalised recommendations