DNA and Higher Plant Systematics: Some Examples from the Legumes

  • Jeff J. Doyle
  • Jane L. Doyle
Part of the NATO ASI Series book series (volume 57)

Abstract

In the last few years, the DNA revolution has begun to have a dramatic impact on the field of plant systematics. Access to the various plant genomes--chloroplast, mitochondrial, and nuclear--has provided the systematist with a virtually inexhaustible source of characters for phylogenetic analysis. The interaction of DNA technology and cladistic analysis has been particularly powerful: the tools for producing empirical data relevant to phylogenetic relationship have been complemented by a rigorous theoretical framework on which to build explicit hypotheses of homology and phylogeny. This potent combination has led to a rapid acceptance of molecular approaches in “mainstream” plant systematics, which has been manifested in a large number of publications and papers at plant systematics meetings (at least in the USA) involving DNA phylogenies. Not all of the three genomes have received equal attention, however, nor have the tools that are currently most widely used been shown to be useful at all taxonomic levels. Furthermore, the role of polymorphism, of confidence in phylogenies, and in general of the difference between gene trees and species trees is only slowly becoming appreciated among plant systematists and clearly should have some impact on the development of the field.

Keywords

Chlorophyll Codon Recombination Glycine Glutamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Archie JW (1989) Phylogenies of plant families: a demonstration of phylogenetic randomness in DNA sequence data derived from proteins. Evolution 43: 1796–1800CrossRefGoogle Scholar
  2. Banks JA Birky CW Jr. (1985) Chloroplast DNA diversity is low in a wild plant, Lupinus texensis. Proc Natl Acad Sci USA 82: 6950–6954PubMedCrossRefGoogle Scholar
  3. Bernatzky R, Tanksley SD (1986) Majority of random cDNA clones correspond to single loci in the tomato genome. Mol Gen Genet 203: 8–14CrossRefGoogle Scholar
  4. Birky CW Jr. (1988) Evolution and variation in plant chloroplast and mitochondria) genomes. In: Gottlieb LD, Jain SK (eds) Plant Evolutionary Biology. Chapman and Hall, New York, pp 23–53CrossRefGoogle Scholar
  5. Bremer K (1988) The limits of amino acid sequence data in Angiosperm phylogenetic reconstruction. Evolution 42: 795–803CrossRefGoogle Scholar
  6. Bruneau A, Doyle JJ Palmer JD (1990) A chloroplast DNA inversion as a subtribal character in the Phaseoleae ( Leguminosae ). Syst Bot 15: 378–386CrossRefGoogle Scholar
  7. Demmin DS, Stockinger EJ, Chang YC, Walling LL (1989) Phylogenetic relationships between the chlorophyll a/b binding protein (CAB) multigene family: an intra-and interspecies study. J Mol Evol 29: 266–279.PubMedCrossRefGoogle Scholar
  8. Donoghue MJ, Doyle JA, Gauthier JA, Kluge AG, Rowe T (1989) The importance of fossils in phylogeny reconstruction. Annu Rev Ecol Syst 20: 431–460.CrossRefGoogle Scholar
  9. Doyle JJ (1987) Variation at the DNA level: uses and potential in legume systematics. In: Stirton CH (ed) Advances in Legume Systematics, Part 3. Royal Botanic Gardens, Kew, pp 1–30Google Scholar
  10. Doyle JJ, Beachy RN (1985) Ribosomal gene variation in soybean (Glycine) and its relatives. Theor Appl Genet 70: 369–376.Google Scholar
  11. Doyle JJ, Brown AHD (1989) 5S nuclear ribosomal gene variation in the Glycine tomentella polyploid complex ( Leguminosae ). Syst Bot 14: 398–407CrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL, Brown AHD (1990a) A chloroplast DNA phylogeny of the wild perennial relatives of the soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution 44: 371–389CrossRefGoogle Scholar
  13. Doyle JJ, Doyle JL, Brown AHD (1990b) Chloroplast DNA phylogenetic affinities of newly discovered species in Glycine ( Leguminosae: Phaseoleae). Syst Bot 15: 466–471CrossRefGoogle Scholar
  14. Doyle JJ, Doyle JL, Brown AHD (1990b) Chloroplast DNA phylogenetic affinities of newly discovered species in Glycine ( Leguminosae: Phaseoleae). Syst Bot 15: 466–471CrossRefGoogle Scholar
  15. Doyle JJ, Doyle JL, Brown AHD, Grace JP (1990d) Multiple origins of polyploids in the Glycine tabacina complex inferred from chloroplast DNA polymorphism. Proc Natl Acad Sci USA 87: 714–717PubMedCrossRefGoogle Scholar
  16. Doyle JJ, Doyle JL, Grace JP, Brown AHD (1990e) Reproductively isolated polyploid races of Glycine tabacina ( Leguminosae) had different chloroplast genome donors. Syst Bot 15: 173–181CrossRefGoogle Scholar
  17. Doyle JJ, Doyle JL, Grace JP, Brown AHD (1990e) Reproductively isolated polyploid races of Glycine tabacina ( Leguminosae) had different chloroplast genome donors. Syst Bot 15: 173–181CrossRefGoogle Scholar
  18. Doyle JJ, Schuler MA, Godette WD, Zenger V, Beachy RN, Slightom J (1986) The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris. J Biol Chem 261: 9228–9238PubMedGoogle Scholar
  19. Ellis THN, Davies DR, Castleton JA, Bedford ID (1984) The organization and genetics of rDNA length variants in peas. Chromosoma 91: 74–81.CrossRefGoogle Scholar
  20. Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22: 521–565.PubMedCrossRefGoogle Scholar
  21. Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19: 99–113PubMedCrossRefGoogle Scholar
  22. Gibbs PE, Strongin KB, McPherson A (1989) Evolution of legume seed storage proteins-a domain common to legumins and vicilins is duplicated in vicilins. Mol Biol Evol 6: 614–623PubMedGoogle Scholar
  23. Golenberg EM, Giannasi DE, Clegg MT, Smiley CJ, Durbin M, Henderson D, Zurawski G (1990) Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344: 656–658.PubMedCrossRefGoogle Scholar
  24. Gottlieb LD (1988) Towards molecular genetics in Clarkia: gene duplications and molecular characterization of PGI genes. Ann Missouri Bot Gard 75: 1169–1179CrossRefGoogle Scholar
  25. Grabau EA, Davis WH, Gengenbach BG (1989) Restriction fragment length polymorphism in a subclass of the ‘Mandarin’ soybean cytoplasm. Crop Sci 29: 1554–1559CrossRefGoogle Scholar
  26. Hightower RC, Meagher RB (1985) Divergence and differential expression of soybean actin genes. EMBO J 4: 1–8.PubMedGoogle Scholar
  27. Jorgensen RA, Cluster PD (1988) Modes and tempos in the evolution of nuclear ribosomal DNA: new characters for evolutionary studies and new markers for genetic and population studies. Ann Missouri Bot Gard 75: 1238–1247CrossRefGoogle Scholar
  28. Kolodner R, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76: 41–45PubMedCrossRefGoogle Scholar
  29. Lavin M, Doyle JJ, Palmer JD (1990) Evolutionary significance of the loss of the chloroplast DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390–402CrossRefGoogle Scholar
  30. Lavin M, Doyle JJ, Palmer JD (1990) Evolutionary significance of the loss of the chloroplast DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390–402CrossRefGoogle Scholar
  31. Meagher RB, Berry-Lowe S, Rice K (1989) Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Genetics 123: 845–863PubMedGoogle Scholar
  32. Menacio Dl, Hepburn AG, Hymowitz T (1989) Restriction fragment length polymorphism ( RFLP) of wild perennial relatives of soybean. Theor Appl Genet 79: 235–240Google Scholar
  33. Milligan BG, Hampton JN, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol Biol Evol 6: 355–368PubMedGoogle Scholar
  34. Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondria) DNA under various demographic models of speciation. In: Karlin S, Nevo E (eds) Evolutionary Processes and Theory. Academic Press, New York, pp 515–534Google Scholar
  35. Palmer JD (1985) Evolution of chloroplast and mitochondria) DNA in plants and algae. In: Macintyre RJ (ed) Molecular Evolutionary Genetics. Plenum, New York, pp. 131–240Google Scholar
  36. Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure but slowly in sequence. J Mol Evol 28: 87–97PubMedCrossRefGoogle Scholar
  37. Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988a) Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Gard 75: 1180–1206CrossRefGoogle Scholar
  38. Palmer JD, Jorgensen RA, Thompson WF (1985) Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics 109: 195–213PubMedGoogle Scholar
  39. Palmer JD, Osorio B, Thompson WF (1988b). Evolutionary significance of inversions in legume chloroplast DNAs Curr Genet 14: 65–74CrossRefGoogle Scholar
  40. Palmer JD, Osorio B, Aldrich J, Thompson WF (1987) Chloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11: 275–286CrossRefGoogle Scholar
  41. Palmer JD, Singh GP, Pillay DTN (1983) Structure and sequence evolution of three legume chloroplast DNAs. Mol Gen Genet 190: 13–19CrossRefGoogle Scholar
  42. Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78: 5533–5537PubMedCrossRefGoogle Scholar
  43. Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5: 568–583PubMedGoogle Scholar
  44. Polhill RM (1981) Papilionoideae. In: Polhill RM, Raven PH (eds) Advances in Legume Systematics, Part 1. Royal Botanic Gardens, Kew, pp 191–208Google Scholar
  45. Singh RJ, Kollipara KP, Hymowitz T (1987) Polyploid complexes of Glycine tabacina (Labill.) Benth. and G. tomentella Hayata revealed by cytogenetic analysis. Genome 29: 490–497CrossRefGoogle Scholar
  46. Soltis DE, Soltis PS (1989) Allopolyploid speciation in rragopogon: insights from chloroplast DNA. Amer J Bot 76: 1114–1118CrossRefGoogle Scholar
  47. Soltis DE, Soltis PS, Ness B (1989) Chloroplast DNA variation and multiple origins of autopolyploidy in Heuchera micrantha ( Saxifragaceae ). Evolution 43: 650–656CrossRefGoogle Scholar
  48. Walbot V, Goldberg RB (1979) Plant genome organization and its relationship to classical plant genetics. In: Hall TC, Davies JW (eds) Nucleic Acids in Plants. CRC Press, Boca Raton, pp 3–40.Google Scholar
  49. Weeden NF, Doyle JJ, Lavin M (1989) Distribution and evolution of a glucosephosphate isom:,rase duplication in the Leguminosae Evolution 43: 1637–1651CrossRefGoogle Scholar
  50. Weeden NF, Wolko B (1990) Linkage map for the garden pea. In: O’Brien S (ed) Genetic Maps. Cold Spring Harbor, New York, pp 6106–6112Google Scholar
  51. Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H, (1989) Dates of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Aced Sci USA 86: 6201–6205.CrossRefGoogle Scholar
  52. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84, 9054–9058.PubMedCrossRefGoogle Scholar
  53. Zimmer EA, Hamby RK, Arnold ML, LeBlanc DA, Theriot EC (1989) Ribosomal RNA phylogenies and flowering plant evolution. In: Fernholm B, Bremer K, Jornvall H (eds) The Hierarchy of Life. Elsevier, Amsterdam, pp 205–214.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Jeff J. Doyle
    • 1
  • Jane L. Doyle
    • 1
  1. 1.L. H. Bailey HortoriumCornell UniversityIthacaUSA

Personalised recommendations