Reactive Processes for Mobile Robot Control

  • F. Noreils
  • A. Khoumsi
  • G. Bauzil
  • R. Chatila


An approach for the design of a mobile robot control structure based on the notion of process establishing a dynamic link between perception and action is presented. Sensor (resp. effector) modules in charge of executing basic computations on data from sensors (reap. commands to effectors) are defined. We want the robot to perform various tasks in different conditions: according to the situation, it will use its processes to achieve different closed-loop behaviors. The control system manages the processes with the help of surveillance monitors so as to guarantee consistent behavior of the robot, while ensuring reactivity. Examples are given to illustrate this approach. The use of processes highlights a part of the architecture we have developed on our mobile robot HILARE.


Mobile Robot Sensor Module Obstacle Avoidance Robot Parallel Ultrasonic Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ronald C. Arkin. Motor shema based navigation for a mobile robot: an approach to programming by behavior. In IEEE, International Conference on Robotics and Automation, Raleigh, pages 264–271, 1987.Google Scholar
  2. [2]
    Ronald C. Arkin, Edward M. Riseman, and Allan R. Hanson. AuRA: an architecture for vision-based robot navigation. In Proc. DARPA Image Understanding Worshop, Los Angeles, 1987.Google Scholar
  3. [3]
    G. Bauzil, M. Briot, and P. Ribes. A navigation sub-system using ultrasonic sensors for the mobile robot HILARE. In 1st International Conference on Robot Vision and Sensory Control, Stratford-Upon-Avon, April 1981.Google Scholar
  4. [4]
    G. Bauzil, M. Briot, P. Ribes, and M. Vaisset. Le sous-système de navigation par ultrason du robot mobile HILARE. In Seme Congrès AFCET-INRIA sur la Reconnaissance des Formes et L’intelligence Artificielle, Nancy France, Septembre 1981.Google Scholar
  5. [5]
    G. Bauzil, C. Lemaire, and G. Vialaret. Robot Mobile HILARE, Architecture et Fonctionnalités de Base. Technical Report 88132, LAAS CNRS, 1988.Google Scholar
  6. [6]
    R. Bhatt, D. Gaw, and A. Meystel. A real-time guidance system for an autonomous vehicle. In IEEE,International Conference on Robotics and Automation, Raleigh,pages 1785–1791, 1987.Google Scholar
  7. [7]
    Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE journal of Robotics and Automation, RA-2(1):14–23, 1986.CrossRefGoogle Scholar
  8. [8]
    Raja Chatila and Georges Giralt. Task and path planning for mobile robots. In Nato Worshop on Machine Intelligence and Knowledge Engineering for Robotic Applications, Marattea Italy, May 1986.Google Scholar
  9. [9]
    Raja G. Chatila. Mobile robot navigation: space modeling and decisional processes. In 3rd ISRR, Couvieux, France, 1985.Google Scholar
  10. [10]
    H. Chochon and B. Leconte. Etude d’un Module de Locomotion pour le Robot Mobile HILARE. Technical Report, L.A.A.S., 1983.Google Scholar
  11. [11]
    James L. Crowley. Asynchronous control of orientation and displacement in a robot vehicle. To Appear in IEEE Conference in Robotics and Automation, Scottsdale Arizona, 1989.Google Scholar
  12. [12]
    James L. Crowley. Navigation for an intelligent mobile robot. IEEE journal of Robotics and Automation, 1(1), March 1985.Google Scholar
  13. [13]
    Alberto Elfes. A sonar-based mapping and navigation system. IEEE journal of Robotics and Automation, 3(3):249–266, 1987.CrossRefGoogle Scholar
  14. [14]
    Takero Hongo, Hideo Arakawa, Gunji Sugimoto, Koichi Tange, and Yuzo Yamamoto. An automatic guidance system of a self-contained vehicle. IEEE Transaction on Industrial Electronics, IE-34(1):5–10, February 1987.Google Scholar
  15. [15]
    Can Isik and Alexander M. Meystel. Pilot level of a hierarchical controller for an unmanned mobile robot. IEEE journal of Robotics and Automation, 4(3):241–255, June 1988.CrossRefGoogle Scholar
  16. [16]
    Leslie P. Kaelbling. An Architecture for Intelligent Reactive Systems. Technical Report, Artificial Intelligence Center SRI International, April 1986.Google Scholar
  17. [17]
    Y. Kanayama and N. Miyake. Trajectory generation for mobile robot. In 3rd ISRR, Gouvieux, France, pages 333–340, 1985.Google Scholar
  18. [18]
    Y. Kanayama, Amir Nilipour, and Charles Lelm. A locomotion method for autonomous vehicles. In IEEE,International Conference on Robotics and Automation, Philadelphie, 1988.Google Scholar
  19. [19]
    Y. Kanayama, S. Yuta, and Y. Kubotera. A sonic finding module for mobile robots. In 7th International Conference on Industrial Robot Technology, pages 643 — 652, 1984. October 2nd - 4th, Gothenburg, Sweden.Google Scholar
  20. [20]
    Ahmed Khoumsi. Pilotage, asservissement sensoriel et localisation d’un robot mobile autonome. Doctorat de l’ Université Paul Sabatier, June 1988.Google Scholar
  21. [21]
    Ahmed Khoumsi and Pascal Migaud. Amélioration des capacités comportementales d’HILARE:Pilotage et contrôle d’exécution de mouvements. Technical Report 86062, L.A.A.S., 1986.Google Scholar
  22. [22]
    Kiyoshi Komoriya, Susumu Tachi, and Kazuo Tanie. A method of autonomous locomotion for mobile robot. Advanced Robotic, 1(1):3–19, 1986.CrossRefGoogle Scholar
  23. [23]
    Roman Kuc and M. W. Siegel. Efficient representation of reflecting structures for a sonar navigation model. In IEEE, International Conference on Robotics and Automation, Raleigh, pages 1916–1923, 1987.Google Scholar
  24. [24]
    J.P Laumond. Feasible trajectories for mobile robots with kinematics and environment constraints. In International Conference on Autonomous Systems, 1986. Amsterdam, Netherland.Google Scholar
  25. [25]
    Damien Lyons. RS: A Formal Model of Distributed Computation For Sensory-Based Control. PhD thesis, University oh Massachusetts, Amherst, September 1986.Google Scholar
  26. [26]
    Joseph S. B. Mitchell, David W. Payton, and David M. Keirsey. Planning and reasoning for autonomous vehicle control. International Journal of Intelligent Systems, II:129–198, 1987.Google Scholar
  27. [27]
    H. P. Moravec and A. Elfes. A high resolution maps from wide angle sonar. In IEEE, International Conference on Robotics and Automation, St Louis, pages 116–121, 1985.Google Scholar
  28. [28]
    John J. Nitao and Alexandre M. Parodi. A real time reflexive pilot for an autonomous land vehicle. IEEE Control System Magazine, 14–22, 1986.Google Scholar
  29. [29]
    Fabrice R. Noreils and Raja G. Chatila. Control of mobile robot actions. To appear in IEEE Conference on Robotics and Automation, Scottsdale Arizona, 1989.Google Scholar
  30. [30]
    The Mathematical Society of Japan, editor. Encyclopedic Dictionnary of Mathematics. MIT Press Cambridge, Massachusetts and London, 1987. Second Edition.Google Scholar
  31. [31]
    David W. Payton. An architecture for reflexive autonomous vehicle control. In IEEE, International Conference on Robotics and Automation, San Francisco, pages 1838–1845, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • F. Noreils
    • 1
  • A. Khoumsi
    • 1
  • G. Bauzil
    • 1
  • R. Chatila
    • 1
  1. 1.LAAS-CNRSToulouse-cedexFrance

Personalised recommendations