An Auto-Calibration System for Vision-Servoed Robots

  • Larry E. Banta
  • Timothy Bubnick


This paper presents an eye-to-hand calibration scheme for visually-servoed robot systems. The visual servoing technique in this study involves maneuvering the robot to grasp a randomly oriented workpiece. The focus of the calibration scheme is to minimize the offset between the achieved end-effector position and the desired position. The proposed method statistically derives a transformation matrix whose coefficents compensate for the robot and camera inaccuracies which create the positional offset.


Assure Lawson Timothy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Y. Tsai, “An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision”, Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 364–374, 1986.Google Scholar
  2. [2]
    K. D. Gremban, G. E. Thorpe, and T. Kanade, “Geometric Camera Calibration Using Systems of Linear Equations”, Proc. IEEE Conference on Robotics and Automation, pp. 562–567, 1988Google Scholar
  3. [3]
    Y. C. Shiu and S. Ahmad, “Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX-AB”, IEEE Transactions on Robotics and Automation, Vol. 5, No. 1, Feb. 1989.Google Scholar
  4. [4]
    B. R. Davies and W.E. Red, “Part Relative Robot Inaccuracy Compensation Using Kinematic and Stochastic Modeling”, Proceeding of the Second International Conference, San Diego, California, pp. 330–337, July 28–31, 1987.Google Scholar
  5. [5]
    W. K. Veitschegger and C. H. Wu, “Robot Calibration and Compensation”, IEEE Journal of Robotics and Automation, Vol. 4, No. 6, Dec. 1988.Google Scholar
  6. [6]
    S. A. Hayati, “Robot Arm Geometric Link Calibration”, Proc. 22nd IEEE Conf. on Decision and Control, pp. 1477–1483, Dec. 1983.Google Scholar
  7. [7]
    D. E. Whitney, C. A. Lozinski, and J. M. Rourke, “Industrial Robot Calibration Method and Results”, Proc. 1984 Int. Computers in Engineering Conf. and Exhibit, Vol. 1, pp. 92–100, 1984.Google Scholar
  8. [8]
    F. G. King, G. V. Puskorius, F. Yuan, R. C. Meier, V. Jevabalan, and L. A. Feldkamp, “Vision Guided Robots for Automated Assembly”, Proc. IEEE Conf. on Robotics and Automation, pp. 1611–1616, 1988.Google Scholar
  9. [9]
    R. Y. Tsai and R. K. Lenz, “Real Time Versatile Robotics Hand/Eye Calibration Using 3D Machine Vision”, Proc. IEEE Conf. on Robotics and Automation, pp. 554–561, 1988.Google Scholar
  10. [10]
    J. J. Graig, “Introduction to Robotics Mechanics and Control”, Massachusetts: Addison-Wesley Publishing Company, 1986.Google Scholar
  11. [11]
    J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices”, ASME Journal of Applied Mechanics, Vol. 77, pp. 215–221, June, 1955.MathSciNetGoogle Scholar
  12. [12]
    C. L. Lawson and R. J. Hanson, “Solving Least Squares Problems”, Prentice-Hall, New Jersey, 1974.MATHGoogle Scholar
  13. [13]
    G. H. Golub and C. Reinsch, “Singular Value Decomposition and Least Squares Solutions”, Numerical Mathematics, Vol. 14, pp. 403–420. 1970.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes: The Art of Scientific Computing”, Cambridge University Press, 1986.Google Scholar
  15. [15]
    G. H. Foesyth and C. B. Moler, “Computer Methods for Mathematical Computations”, Prantice-Hall, New Jersey, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Larry E. Banta
    • 1
  • Timothy Bubnick
    • 1
  1. 1.Mechanical and Aerospace Engineering DepartmentWest Virginia UniversityMorgantownUSA

Personalised recommendations