Nonlinear Decoupling Control Control of Flexible Robots

  • P. Chedmail
  • W. Khalil


This paper presents an approach for the control of flexible robots. The given control assures the decoupling and exact linearization of the equations of motion of a controlled vector whose dimension is equal to the number of actuators.The decoupled and linearized equations are given in the configuration space and in the cartesian space. The control law is obtained directly using the dynamic model of these structures. An application on a flexible single-link. robot is given in the paper.


Motor Torque Flexible Manipulator Cartesian Space Model Reference Adaptive Control Terminal Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barraco, A., Cuny and Ishiomin (1984). Accounting for member deformations in the determination of the dynamic behaviour of robot type structures. Fenomech ’84. 3rd International Conference on Finite Elements in Non Linear Mechanics.Google Scholar
  2. Book, W. J., “Recursive Lagrangien Dynamics of Flexible Manipulator Arms”, The Int. J. of Robotics Research, Vo1.3, n° 3. 1984.Google Scholar
  3. Canon, H. Jr and E. Schmitz (1984). Initial experiments on the end-point control of a flexible one-link robot. The International Journal of Robotics Research. 3, 62–75.CrossRefADSGoogle Scholar
  4. Canudas de Wit, C., Van den Bossche, W.J., Model reference adaptive control of a flexible arm with explicit estimation of the payload mass and friction, IFAC Int. Symp. on Theory of Robots, Vienna, 1986.Google Scholar
  5. Chedmail, P. and Michel, G. (1985).“Modelisation of Plane Flexible Robots”, 15th ISIR. Tokyo, Japan. Sept. 1985.Google Scholar
  6. Chedmail P., Glumineau A. et Bardiaux J.C. (1987). Modélisation et commande d’un robot souple plan. ICAR87. Versailles, Septembre 1987.Google Scholar
  7. De Luca A., A. Isidori and F. Nicolo, (1985), Control of robot arm with elastic joints via nonlinear dynamic feedback. Proc. 24th Conf. Dec. Control., December, Fort Lauderdale.U.S.A Google Scholar
  8. De Luca A., (1988), Dynamic control of robots with joint elasticy. Proc. IEEE Conf. on Robotics and Automation, Philadilphia1988. pp. 152–158Google Scholar
  9. Descusse J. and C. H. Moog, (1987). Dynamic decoupling for Right-invertible Nonlinear Systems, Syst. Contr. Let..Google Scholar
  10. De Simone and F. Nicolo, (1985), On the control of elastic robots dy feedback decoupling, Proc. 24th Cont., Dec. Control., december, Fort Lauderdale. U.S.A Google Scholar
  11. De Schutter J., Van Brussels H., Adams M., Froment A. and Faillot J.L. Control of flexible robots using generalized non-linear decoupling. Acts of SYROCO 88, IFAC Symposium, october 1988.Google Scholar
  12. Geradin, M., G. Robert, C. Bernardin (1983). Dynamic modelling of manipulators with flexible members. Liege. Mai 1983.Google Scholar
  13. Hastings,G.G.,Book, W.J (1985), Experiments in optimal control of a flexible arm, Proc, American Control Conf. pp.728–729 Google Scholar
  14. Isidori A., Moog C.H., (1987), On the nonlinear equivalent of the notion of transmission zeros, Modeling and adaptive control (C.I.Byrnes, A.H.Kurszansski Eds.), Springer. 1987 Google Scholar
  15. Luh, J.Y.S., Walker M. W., Paul R.P.C. (1980), Resolved acceleration control of a mechanical anipulators. IEEE Trans. Automat. Control. Vo1. 25 (3),pp. 225–236.CrossRefGoogle Scholar
  16. Marino, R., Spong, M.W. (1986), Nonlinear control techniques for flexible joint manipulators: A single link case study. Proc.IEEE Conf. Robotics and Automation, San Francisco 1986. pp. 1030–1036 Google Scholar
  17. Khalil W., Liégeois A., Fournier A. (1979). Commande dynamique des robots. Revue RAIRO automatique. Vol 13. n° 2, 1979.Google Scholar
  18. Khalil W. et Chevallereau C. (1987). An efficient algorithm for the dynamic control of robots in the Cartesian space. Proc. 261 IEEE Conf. on Decision and Control, Los Angeles.Google Scholar
  19. Khorasani, K., Kokotovic, P.V. (1985), Feedback linearization of a flexible manipulator near its rigid body manifold. Systems and control letters Vol. 6 (3), pp. 187–192.CrossRefMATHMathSciNetGoogle Scholar
  20. Siciliano B, Book W.J. (1988) A singular perturbation approach to control of lightweight flexible manipulators, International Journal of Robotics Research. Vol.7, No, 4, August 1988.Google Scholar
  21. Singh S.N.,Schy A.A., (1985), Robust control of an elastic arm based on invertibility and feedback stabilization, Proc. 24th Conf. Dec. Control., Fort Lauderdale. Dec. 1985, pp. 1317–1322.Google Scholar
  22. Truckenbrodt, A. (1981). Modelling and control of flexible manipulator structures. Proc. of 4th International CISM-IFTOMM Symposium in Zaborow.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. Chedmail
    • 1
  • W. Khalil
    • 1
  1. 1.L.A.N. (U.A.R 256 du C.N.R.S.) and L.M.S. E.N.S.M.NantesFrance

Personalised recommendations