Skip to main content

Part of the book series: Nachrichtentechnik ((NACHRICHTENTECH,volume 16))

  • 163 Accesses

Zusammenfassung

Während Monomodefasern vor allem für Breitbandübertragung über sehr große Entfernungen in Frage kommen, haben Multimodefasern große technische Bedeutung für kostengünstige Übertragungssysteme für kleine bis mittlere Entfernungen und Bitraten (≤10...15 km, ≤140 Mbit/s, Näheres in Abschnitt 7.4). Der Kerndurchmesser 2a und auch die numerische Apertur AN sind bei Multimode-fasern wesentlich größer als bei Monomodefasern; daher sind bei Steckern und Spleißen gröbere mechanische Toleranzen zulässig und als Sender können außer Lasern auch inkohärente Lichtquellen (LED) verwendet werden, weil deren geringere Strahldichte hier ausreicht, um brauchbare Lichtleistungen einzukoppeln. Die meisten Multimodefasern sind Gradientenfasern mit typischen Zahlenwerten von 2a =50 μm, AN≈0,2, ∆≈0,009, d.h. v ≈37 bei λ = 0,85 μm und v 24 bei λ = 1,3 μm. Diese Fasern können nach (4.62) mehrere hundert Moden führen und erreichen Bandbreite-Längenprodukte von einigen GHz•km. Für einfache Kurzstrecken-Übertragungssysteme sind auch Stufenfasern in Gebrauch mit typischen Zahlenwerten von 2a≈100 μm und A N≈0,3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gloge, D.; Marcatili, E.A.J.: Multimode theory of graded-core fibers. Bell Syst. Tech. Journ. 52 (1973) 1563–1578

    Google Scholar 

  2. Gloge, D.: Propagation effects in optical fibers. IEEE Trans. MTT-23 (1975) 106–120

    Google Scholar 

  3. Kawakami, S.; Nishizawa, J.I.: An optical waveguide with optimum distribution of the refractive index with reference to waveform distortion. IEEE Trans. MTT-16 (1968) 814–818

    Google Scholar 

  4. Geckeler, S.: Berechnungsverfahren für die Lichtausbreitung in Glasfasern. Siemens Forsch.- u. Entw.-Ber. 6 (1977) 143–151

    Google Scholar 

  5. Hartog, A.H.; Adams, M.J.: On the accuracy of the WKB approximation in optical dielectric waveguides. Opt. Quant. Electron. 9 (1977) 223–232

    Article  Google Scholar 

  6. Jacobsen, G.; Ramskov-Hansen, J.J.: Propagation constants and group delays of guided modes in graded-index fibers: comparison of three theories. Appl. Opt. 18 (1979) 2837–2842

    Article  Google Scholar 

  7. Olshansky, R.: Propagation in glass optical waveguides. Rev. Mod. Phys. 51 (1979) 341–367

    Article  Google Scholar 

  8. Feit, M.D.; Fleck, J.A.: Light propagation in graded-index optical fibers. Appl. Opt. 17 (1978) 3990–3998

    Article  Google Scholar 

  9. Pask, C.: Exact expressions for scalar modal eigenvalues and group delays in power-law optical fibers. Journ. Opt. Soc. Am. 69 (1979) 1599–1603

    Article  Google Scholar 

  10. Love, J.D.; Hussey, C.D.: Variational approximations for higher-order modes of weakly-guiding fibres. Opt. Quant. Electron. 16 (1984) 41–48

    Article  Google Scholar 

  11. Peterson, G.E., et al.: An exact numerical solution to Maxwell’s equations for lightguides. Bell Syst. Tech. Journ. 59 (1980) 1175–1197

    Google Scholar 

  12. Lenahan, T.A.: Calculation of modes in an optical fiber using the finite element method and EISPACK. Bell Syst. Tech. Journ. 62 (1983) 2663–2694

    Google Scholar 

  13. Leminger, O.: Ein Näherungsverfahren zur Berechnung der geführten Moden in vielwelligen Gradientenfasern. Arch. Elektron. Übertr. 32 (1978) 353–356

    Google Scholar 

  14. Snyder, A.W.; Mitchell, D.J.: Leaky rays on circular optical fibers. Journ. Opt. Soc. Am. 64 (1974) 599–607

    Article  Google Scholar 

  15. Adams, M.J.; Payne, D.N.; Sladen, F.M.E.: Leaky rays on optical fibres of arbitrary (circularly symmetric) index profiles. Electron. Lett. 11 (1975) 238–240

    Article  Google Scholar 

  16. Zemon, S.; Fellows, D.: Tunneling leaky modes in a parabolic index fiber. Appl. Opt. 15 (1976) 1936–1941

    Article  Google Scholar 

  17. Petermann, K.: The mode attenuation in general graded-core multimode fibers. Arch. Elektron. Übertr. 29 (1975) 345–348

    Google Scholar 

  18. Olshansky, R.: Leaky modes in graded-index optical fibers. Appl. Opt. 15 (1976) 2773–2777

    Article  Google Scholar 

  19. Snyder, A.W.; Love, J.D.: Attenuation coefficient for tunnelling leaky rays in graded fibres. Electron. Lett. 12 (1976) 324–326

    Article  Google Scholar 

  20. Adams, M.J.; Payne, D.N.; Sladen, F.M.E.: Length-dependent effects due to leaky modes on multimode graded-index optical fibres. Opt. Comm. 17 (1976) 204–209

    Article  Google Scholar 

  21. Ramskov-Hansen, J.J.; Ankiewicz, A.; Adams, M.J.: Attenuation of leaky modes in graded noncircular multimode fibres. Electron. Lett. 16 (1980) 94–96

    Article  Google Scholar 

  22. Gloge, D.: Optical power flow in multimode fibers. Bell Syst. Tech. Journ. 51 (1972) 1767-1783

    Google Scholar 

  23. Daido, Y., et al.: Determination of modal power distribution in graded-index optical wave-guides from near-field patterns and its application to differential mode attenuation measurement. Appl. Opt. 18 (1979) 2207–2213

    Article  Google Scholar 

  24. Kawakami, S.; Tanji, H.: Evolution of power distribution in graded-index fibres. Electron. Lett. 19 (1983) 100–102

    Article  Google Scholar 

  25. Stewart, W.J.: Method for measuring power distributions in graded-and step-index fibers. Tagungsband OFC’79, Washington D.C. 1979, ThG1, 116–118

    Google Scholar 

  26. Presby, H.M.: Profile characterization of optical fibers: a comparative study. `rn. 60 (1981) 1335–1362

    Google Scholar 

  27. Watkins, L.S.: Laser beam refraction traversely through a graded-index preform to determine refractive index ratio and gradient profile. Appl. Opt. 18 (1979) 2214–2222

    Article  Google Scholar 

  28. White, K.I.: Practical application of the refracted near-field technique for the measurement of optical fibre refractive-index profiles. Opt. Quant. Electron. 11 (1979) 185–196

    Article  Google Scholar 

  29. Young, M.: Optical fiber index profiles by the refracted-ray method (refracted near-field scanning). Appl. Opt. 20 (1981) 3415–3421

    Article  Google Scholar 

  30. Müller, T.: Resolution improvement in refracted near-field index measurement by a lens-shaped liquid cell. Electron. Lett. 19 (1983) 580–582

    Article  Google Scholar 

  31. Cohen, L.G.; Kaiser, P.; Lin, C.: Experimental techniques for evaluation of fiber transmission loss and dispersion. Proc. IEEE 68 (1980) 1203–1209

    Article  Google Scholar 

  32. Heitmann, W., et al.: Comparative spectral attenuation measurements on optical fibres: final report by members of COST 208. Opt. Quant. Electron. 16 (1984) 319–326

    Article  Google Scholar 

  33. Holmes, G.T.; Hawk, R.M.: Limited phase-space attenuation measurements of low-loss optical waveguides. Opt. Lett. 6 (1981) 55–57

    Article  Google Scholar 

  34. Tagungsband Symposium on Optical Fiber Measurements, Boulder 1980. NBS Special Publication 597

    Google Scholar 

  35. Tagungsband Symposium on Optical Fiber Measurements, Boulder 1982. NBS Special Publication 641

    Google Scholar 

  36. Olshansky, R.; Oaks, S.M.: Differential mode attenuation in graded-index fibers. Appl. Opt. 17 (1978) 1830–1835

    Article  Google Scholar 

  37. Jeunhomme, L.; Pocholle, J.P.: Selective mode excitation of graded-index optical fibres. Appl. Opt. 17 (1978) 463–468

    Article  Google Scholar 

  38. Saijonmaa, J.; Sharma, A.B.; Halme, S.J.: Selective excitation of parabolic-index optical fibers by Gaussian beams. Appl. Opt. 19 (1980) 2442–2452

    Article  Google Scholar 

  39. Grau, G.; Leminger, O.; Sauter, E.: Mode excitation in parabolic-index fibres by Gaussian beams. Arch. Elektron. Übertr. 34 (1980) 259–265

    Google Scholar 

  40. Agarwal, A.K.; Evers, G.; Unrau, U.: New and simple method for selective mode group excitation in graded-index optical fibres. Electron. Lett. 19 (1983) 694–695

    Article  Google Scholar 

  41. Berdagué, S.; Facq, P.: Mode division multiplexing in optical fibers. Appl. Opt. 21 (1982) 1950–1955

    Article  Google Scholar 

  42. Eriksrud, M.; Mickelson, A.; Lauritzen, S.: Backscattering signatures from optical fibers with differential mode attenuation. IEEE Journ. LT-2 (1984) 139–145

    Google Scholar 

  43. Neumann, E.G.: Analysis of the backscattering method for testing optical fiber cables. Arch. Elektron. Übertr. 34 (1980) 157–160

    Google Scholar 

  44. Olshansky, R.; Keck, D.B.: Pulse broadening in graded-index optical fibers. Appl. Opt. 15 (1976) 483–491

    Article  Google Scholar 

  45. Arnaud, J.A.: Pulse broadening in multimode fibers. Bell Syst. Tech. Journ. 54 (1975) 1179-1205

    Google Scholar 

  46. Crone, G.A.E.; Arnold, J.M.: Anomalous group delay in optical fibres. Opt. Quant. Electron. 12 (1980) 511–517

    Article  Google Scholar 

  47. Geckeler, S.: Dispersion in optical fibers: new aspects. Appl. Opt. 17 (1978) 1023–1029

    Article  Google Scholar 

  48. Geckeler, S.: Gruppenlaufzeitdifferenzen in Lichtwellenleitern mit Gradientenprofil. Frequenz 32 (1978) 68–75

    Article  Google Scholar 

  49. Gloge, D.: Bündelung kohärenter Lichtstrahlen durch ein ortsabhängiges Dielektrikum. Arch. Elektron. Übertr. 18 (1964) 451–452

    Google Scholar 

  50. Marcatili, E.A.J.: Modal dispersion in optical fibers with arbitrary numerical aperture and profile dispersion. Bell Syst. Tech. Journ. 56 (1977) 49–63

    Google Scholar 

  51. Geckeler, S.: Compensation of profile dispersion in graded-index optical fibres. Electron. Lett. 15 (1979), 682–683

    Article  Google Scholar 

  52. Behm, K.: Group delay in CVD-fabricated fibres with diffused stairlike index profiles. Arch. Elektron. Übertr. 30 (1976) 329–331

    Google Scholar 

  53. Marcuse, D.: Calculation of bandwidth from index profiles of optical fibers. 1: Theory. Appl. Opt. 18 (1979) 2073–2080

    Article  Google Scholar 

  54. Presby, H.M.; Marcuse, D.; Cohen, L.G.: Calculation of bandwidth from index profiles of optical fibers. 2: Experiment. Appl. Opt. 18 (1979) 3249–3255

    Article  Google Scholar 

  55. Marcuse, D.; Presby, H.M.: Effects of profile deformations on fiber bandwidth. Appl. Opt. 18 (1979) 3758–3763

    Google Scholar 

  56. Okamoto, K.: Comparison of calculated and measured impulse responses of optical fibers. Appl. Opt. 18 (1979) 2199–2206

    Article  Google Scholar 

  57. Carnevale, A.; Paek, U.C.: Modal structure of an MCVD optical waveguide fiber. Bell Syst. Tech. Journ. 62 (1983) 1415–1431

    Google Scholar 

  58. Matsumoto, T.: Bandwidth estimation of multispliced GRIN fibers. Appl. Opt. 21 (1982) 1956–1965

    Article  Google Scholar 

  59. Buckler, M.J.; Shiever, J.W.; Partus, F.P.: Optimization of multimode fiber bandwidth via differential group delay analysis. Tagungsband ECOC’80, York 1980, 33–36

    Google Scholar 

  60. Petermann, K.: Simple relationship between differential mode delay in optical fibres and the deviation from optimum profile. Electron. Lett. 14 (1958) 793–794

    Article  Google Scholar 

  61. Jeunhomme, L.; Lamouler, P.: Intermodal dispersion measurements and interpretation in graded-index optical fibres. Opt. Quant. Electron. 12 (1980) 57–64

    Article  Google Scholar 

  62. Stoltz, B.; Yevick, D.: Some comparisons between theoretical and measured differential mode delay responses in graded-index fibres. Opt. Quant. Electron. 13 (1981) 487–492

    Article  Google Scholar 

  63. Stone, F.T.; Ritger, A.J.; Head, E.D.: The use of a quantitative differential mode delay technique to improve fiber bandwidth. IEEE Journ. LT-1 (1983) 585–587

    Google Scholar 

  64. Costa, B.; Morra, P.A.; Sordo, B.: Factors affecting accuracy and interpretation of DMD measurements. Tagungsband ECOC’82, Cannes 1982, 5.5–1

    Google Scholar 

  65. Suzuki, S., et al.: Characteristics of graded-index fiber by VAD method. Tagungsband IOOC’79, Amsterdam 1979, 12.6–1

    Google Scholar 

  66. Wright, J.V.; Nelson, B.P.: Bandwidth studies of concatenated multimode fibre links. Tagungsband Sympos. Opt. Fiber Measurements, Boulder 1982, NBS Special Publication 641, 9–12

    Google Scholar 

  67. Love, W.F.; Nolan, D.A.: Wavelength dependence of the bandwidth concatenation exponent in multimode optical fibers. Tagungsband ECOC’84, Stuttgart 1984, 12A5, 214–215

    Google Scholar 

  68. Marcuse, D.: Theory of Dielectric Optical Waveguides. New York: Academic Press 1974

    Google Scholar 

  69. Olshansky, R.: Mode coupling effects in graded-index optical fibers. Appl. Opt. 14 (1975) 935–945

    Google Scholar 

  70. Nagano, K.; Kawakami, S.: Mode conversion coefficients in graded-index fibers with various fiber-coating schemes: measurements. Appl. Opt. 21 (1982) 542–546

    Article  Google Scholar 

  71. Yevick, D.; Stoltz, B.: Effect of mode coupling on the total pulse response of perturbed optical fibers. Appl. Opt. 22 (1983) 1010–1015

    Article  Google Scholar 

  72. Geckeler, S.: Length-dependence of bandwidth of graded index optical waveguides. Siemens Forsch. u. Entw. Ber. 12 (1983) 313–318

    Google Scholar 

  73. Kitayama, K.; Ohashi, M.; Seikai, S.: Mode conversion at splices in multimode graded-index fibers. IEEE Journ. QE-16 (1980) 971–978

    Article  Google Scholar 

  74. Personick, S.D.: Time dispersion in dielectric waveguides. Bell Syst. Tech. Journ. 50 (1971) 843–859

    MATH  Google Scholar 

  75. Eve, M.: Multipath time dispersion theory of an optical network. Opt. Quant. Electron. 10 (1978) 41–51

    Article  Google Scholar 

  76. Veith, G.: Modified correlation coefficients for improved bandwidth prediction of graded-index fiber concatenations. Electron. Lett. 20 (1984) 1057–1058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geckeler, S. (1990). Multimodefasern. In: Lichtwellenleiter für die optische Nachrichtenübertragung. Nachrichtentechnik, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83951-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83951-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51727-6

  • Online ISBN: 978-3-642-83951-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics