Elements of a Model-Theoretic Framework for Probabilistic Measurement

  • Dieter Heyer
  • Reinhard Niederée
Part of the Recent Research in Psychology book series (PSYCHOLOGY)


Standard model-theoretic concepts in the theory of fundamental measurement are extended so as to yield an abstract framework for probabilistic measurement based on the notion of a probabilistic structure. Conceiving probabilistic structures as ‘P-mixtures’ of deterministic structures allows to analyze certain probabilistic axioms satisfied by the former in terms of first-order axioms satisfied by the latter. Doing so introduces a new perspective into the theoretical discussion of probabilistic axioms as found in probabilistic measurement, and suggests a new scheme of classification. Some further prospects will be briefly discussed, in particular connections to probabilistic logic.


Probabilistic Measurement Probabilistic Condition Probabilistic Structure Background Structure Probabilistic Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carnap, R. (1950). Logical Foundations of Probability. Chicago: Chicago Univ. Press.Google Scholar
  2. Colonius, H. (1984). Stochastische Theorien individuellen Wahlverhaltens. Berlin: Springer.CrossRefGoogle Scholar
  3. Falmagne, J.C. (1980). A probabilistic theory of extensive measurement. Philosophy of Science, 47227–296.CrossRefGoogle Scholar
  4. Falmagne, J.C. (1985). Elements of Psychophysical Theory. New York: Oxford University Press.Google Scholar
  5. Gaifman, H. (1964). Concerning measures on first-order calculi. Israel Journal of Mathematics, 2, 1–18.CrossRefGoogle Scholar
  6. Guilbaud, G. (1953). Sur une difficulté de la théorie du risque. Colloques Internationaux du Centre National de la Recherche Scientifique. (Econometric) 40, 19–25.Google Scholar
  7. Heyer, D. & Mausfeld, R. (1987). On errors, probabilistic measurement and Boolean valued logic. Methodika, 1, 113–138.Google Scholar
  8. Horn, A. & Tarski, A. (1948). Measures in Boolean algebras. Transactions of the American Mathematical Society, 64, 467–497.CrossRefGoogle Scholar
  9. Krantz, D., Luce, R.D., Suppes, P. & Tversky, A. (1971). Foundations of Measurement, Vol. I. Additive and Polynomial Representations. New York: Academic Press.Google Scholar
  10. Los, J. (1962). Remarks on foundations of probability. Proc. Intern. Congress of Mathematicians, Stockholm 1962, 225–229.Google Scholar
  11. Luce. R.D. & Suppes, P. (1965). Preference, utility, and subjective probability. In R.D. Luce, R.R. Bush & E. Galanter (Eds.), Handbook of Mathematical Psychology. Vol. 3. New York: Wiley, 249–410.Google Scholar
  12. Narens, L. (1985). Abstract Measurement Theory. Cambridge, Mass.: MIT Press.Google Scholar
  13. Niederée, R. (1987). On the reference to real numbers in fundamental measurement: a model-theoretic approach. In: E. Roskam & R. Suck (Eds.), Progress in Mathematical Psychology -1. Amsterdam: North-Holland, 3–23.Google Scholar
  14. Scott, D. (1969). Boolean models and nonstandard analysis. In: Luxemburg (Ed.), Application of Model Theory to Algebra, Analysis, and Probability. New York: Holt, Rinehart & Winston, 87–92.Google Scholar
  15. Scott, D. & Krauss, P. (1966). Assigning probabilities to logical formulas. In: J. Hintikka & P. Suppes (Eds.), Aspects of Inductive Logic. Amsterdam: North-Holland, 219–264.CrossRefGoogle Scholar
  16. Scott, D. & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23, 113–128.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Dieter Heyer
    • 1
  • Reinhard Niederée
    • 2
  1. 1.Institut für PsychologieUniversität KielKiel 1Germany
  2. 2.Psychologisches InstitutUniversität BonnBonn 1Germany

Personalised recommendations