Midpoint Sequences, Intransitive J Scales and Scale Values in Unidimensional Unfolding

  • Rian A. W. van Blokland-Vogelesang
Chapter
Part of the Recent Research in Psychology book series (PSYCHOLOGY)

Abstract

Using combinatorial techniques, a number of procedures has been developed to find the best qualitative and quantitative J scales in unidimensional unfolding. On the basis of these procedures a computer program, UNFOLD, has been written. The criterion for a ‘best’ J scale is derived from nonparametric statistics: the minimization of the total number of inversions between the J scale and subjects’ rankings. In defining a quantitative J scale as a ’midpoint sequence’ some useful results are attained: 1) a transitivity check of a quantitative J scale can be done on the basis of the midpoint sequence; 2) scale values for individuals and stimuli can be found using the midpoint sequence and linear programming techniques. The procedures are illustrated on the Coombs’ (1964) Grade Expectations data.

Keywords

unidimensional unfolding combinatorics backtracking branch-and-bound-methods linear programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blokland-Vogelesang, A.W. Van (1985). Unidimensional unfolding complemented by Feigin and Cohen’s error model and by Davison’s test for independence. CSQ-Comp. Stat. Quart., 2, 43–52.Google Scholar
  2. Blokland-Vogelesang, A.W. Van (1988). Unidimensional unfolding complemented by Feigin and Cohen’s error model. In W.E. Saris & I.N. Gallhofer (Eds.), Sociometric Research. London: MacMillan..Google Scholar
  3. Blokland-Vogelesang, A.W. Van (1989a). UNFOLD: a computer program for the unfolding of rankings of preference in one dimension. User’s Manual. Groningen: ProGAMMA. Blokland-Vogelesang, A.W. Van (1989b). Unfolding and consensus rankings: a prestige ladder for technical occupations. In H. Feger & G. de Soete (Eds.), Developments in psychological choice theory. Amsterdam: North-Holland.Google Scholar
  4. Coombs, C.H. (1964). A theory of data. New York: Wiley, 1964.Google Scholar
  5. Davison, M.L. (1979). Testing a unidimensional, qualitative unfolding model for attitudinal or developmental data. Psychometrika, 44, 179–194.CrossRefGoogle Scholar
  6. Feigin, P.D. & Cohen, A. (1978). On a model for concordance between judges. JRSS (B), 40, 203–213.Google Scholar
  7. Lehmann, E.L. (1975). Nonparametrics. New York: Mc Graw-Hill.Google Scholar
  8. Mallows, C.L. (1957). Non null ranking models I. Biometrika, 44, 144–130.Google Scholar
  9. McClelland, G.H. & Coombs, C.H. (1975). Ordmet: a general algorithm for constructing all numerical solutions to ordered metric structures. Psychometrika, 40, 269–290.CrossRefGoogle Scholar
  10. Schuur, H. Van (1984). Structure in political beliefs. Thesis. Amsterdam: CT-Press.Google Scholar
  11. Smolenaars, A.J. (1984). Measuring sentences. Thesis. Univ. of Amsterdam. Holland.Google Scholar
  12. Thrall, R.M. (1952). A combinatorial problem. Michigan Math. J., 1, 81–88.CrossRefGoogle Scholar
  13. Ven, A.H.G S. Van der (1977). Inleiding in de schaaltheorie. Deventer: Van Loghum Slaterus.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Rian A. W. van Blokland-Vogelesang
    • 1
  1. 1.Department of PsychologyFree UniversityAmsterdamThe Netherlands

Personalised recommendations