Advertisement

Current Directions in Mathematical Learning Theory

Chapter
  • 102 Downloads
Part of the Recent Research in Psychology book series (PSYCHOLOGY)

Abstract

The first part of this article surveys different current trends in mathematical learning theory. The main divisions of the subject covered are stimulus-response theory, language learning, formal learning theory, perceptrons, cellular automata, and neural networks. The second part is concerned with extending the ideas of stimulus-response theory to universal computation. This is done by using register machines rather than Turing machines. The main theorem is that any partial recursive function can be asymptotically learned by a register learning model. In the discussion of this result the emphasis is on the need for a carefully organized hierarchy of concepts in order to have a rate of learning that is realistic for either organisms or machines.

Keywords

Current Direction Cellular Automaton Turing Machine Relative Clause Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baianu, I. C. (1986). Computer models and automata theory in biology and medicine. Mathematical Modeling, 7, 1513–1577.CrossRefGoogle Scholar
  2. Burks, A. W. (Ed.) (1984). Essays on cellular automata. Urbana, IL: University of Illinois Press.Google Scholar
  3. Burks, C., and Farmer, D. (1984). Towards modelling DNA sequences as automata. In D. Farmer, T. Toffoli, and S. Wolfram (Eds.), Cellular Automata (Proceedings of an interdisciplinary Workshop, Los Alamos, New Mexico, March 7–11, 1983, pp. 157–167 ). Amsterdam: North-Holland.Google Scholar
  4. Bush, R., and Mosteller, F. (1955). Stochastic models for learning. New York: Wiley.Google Scholar
  5. Codd, E. F. (1968). Cellular automata. New York: Academic Press.Google Scholar
  6. Crangle, C. and Suppes P. (1989). Instruction dialogues: Teaching new skills to a robot. In G. Rodrigues (Ed.), Proceedings of the NASA Conference on Space Telerobotics(January 31 — February 2, 1989, Pasadena, California). Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.Google Scholar
  7. Crick, F., and Asanuma, C. (1986). Certain aspects of the anatomy and physiology of the cerebral cortex. In J. L. McClelland, D. E. Rumelhart, and the PDP Research Group (Eds.), Parallel distributed processing. Explorations in the microstructures of cognition. Vol. 2. Psychological and biological models(pp. 333–371). Cambridge, MA, and London: Massachusetts Institute of Technology Press.Google Scholar
  8. Ehrenfeucht, A., and Mycielski, J. (1973a). Interpolation of functions over a measure space and conjectures about memory. Journal of Approximation Theory, 9, 218–236.CrossRefGoogle Scholar
  9. Ehrenfeucht, A., and Mycielski, J. (1973b). Organisation of memory. Proceedings of the National Academy of Sciences U.S.A., 70, 1478–1480.CrossRefGoogle Scholar
  10. Ehrenfeucht, A., and Mycielski, J. (1977). Learnable functions. In R. E. Butts and J. Hintikka (Eds.), Foundational problems in the special sciences, Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, London, Ontario, Canada, (Vol. 2, pp. 251–256 ). Dordrecht, Holland: Reidel.Google Scholar
  11. Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94–107.CrossRefGoogle Scholar
  12. Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.CrossRefGoogle Scholar
  13. Grossberg, S. (1974). Classical and instrumental learning by neural networks. In R. Rosen and F. Snell (Eds.), Progress in theoretical biology. New York: Academic Press.Google Scholar
  14. Grossberg, S. (1978). A theory of visual coding, memory, and development. In E. L. J. Leeuwenberg and H. F. J. M. Buffart (Eds.), Formal theories of visual perception(pp. 726). New York: Wiley.Google Scholar
  15. Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87, 1–51.PubMedCrossRefGoogle Scholar
  16. Grossberg, S. (1982). Associative and competitive principles of learning and development: The temporal unfolding and stability of STM and LTM patterns. In S. Aman and M. A. Arbib (Eds.), Competition and cooperation in neural nets. Lecture Notes in Biomathernatics, 45, 295–341.Google Scholar
  17. Grossberg, S., and Kuperstein, M. (1986). Neural dynamics of adaptive sensory-motor control. Advances in Psychology 30. Amsterdam: North-Holland.Google Scholar
  18. Hamburger, H., and Wexler, K. (1973). Identifiability of a class of transformational grammars. In K. J. J. Hintikka, J. M. E. Moravcsik, and P. Suppes (Eds.), Approaches to natural language(pp. 153–166). Dordrecht, Holland: D. Reidel.CrossRefGoogle Scholar
  19. Hamburger, H., and Wexler, K. (1975). A mathematical theory of learning transformational grammar. Journal of Mathematical Psychology, 12, 137–177.CrossRefGoogle Scholar
  20. Harrison, M.A. (1965). Introduction to Switching and Automata Theory. New York: McGraw-Hill.Google Scholar
  21. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.Google Scholar
  22. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 2554–2558.CrossRefGoogle Scholar
  23. Hopfield, J. J., and Tank, D. W. (1985). “Neural” computation of decisions in optimization problems. Biological Cybernetics, 52, 141–152.PubMedGoogle Scholar
  24. Hull, C. L. (1943). Principles of behavior. New York: Appleton.Google Scholar
  25. Hull, C. L., Hovland, C. I., Ross, R. T., Hall, M., Perkins, D. T., and Fitch, F. B. (1940). Mathernatico-deductive theory of rote learning. New Haven, CT: Yale University Press.Google Scholar
  26. Kandel, E. R. (1985). Cellular mechanisms of learning and the biological basis of individuality. In E. R. Kandel and J. H. Schwartz (Eds.), Principles of neural science(2nd ed.). Amsterdam: Elsevier.Google Scholar
  27. Kanerva, P. (1988). Space distributed memory. Cambridge, MA: Massachusetts Institute of Technology Press.Google Scholar
  28. Kaplan, R. M., and Bresnan, J. (1982). Lexical-functional grammar: a formal system for grammatical representation. In J. Bresnan (Ed.), The mental representation of grammatical relations. Cambridge, MA: Massachusetts Institute of Technology Press.Google Scholar
  29. Kauffman, S. A. (1984). Emergent properties in random complex automata. In D. Farmer, T. Toffoli, and S. Wolfram (Eds.), Cellular automata(Proceedings of an Interdisciplinary Workshop, Los Alamos, New Mexico, March 7–11, 1983, pp. 145–156). Amsterdam: North-Holland.Google Scholar
  30. Kieras, D. E. (1976). Finite automata and S-R models. Journal of Mathematical Psychology, 6, 127–147.CrossRefGoogle Scholar
  31. Langton, C. G. (1984). Self-reproduction in cellular automata. Physica, 10D, 135–144.Google Scholar
  32. Reprinted in D. Farmer, T. Toffoli, and S. Wolfram (Eds.), Cellular automata (Proceedings of an Interdisciplinary Workshop, Los Alamos, New Mexico, March 7–11, 1983, pp. 135–144). Amsterdam: North-Holland.Google Scholar
  33. McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.CrossRefGoogle Scholar
  34. Minsky, M., and Papert, S. (1969). Perceptrons. Cambridge, MA: Massachusetts Institute of Technology Press.Google Scholar
  35. Myhill, J. (1970). The abstract theory of self-reproduction. In A. W. Burks (Ed.), Essays on cellular automata (pp. 206–218). Urbana, IL: University of Illinois Press.Google Scholar
  36. Newell, A. (1980) Physical symbol systems. Cognitive Science, 4, 135–183.CrossRefGoogle Scholar
  37. Osherson, D. N., Stob, M., and Weinstein, S. (1986). Systems that learn. Cambridge, MA: Massachusetts Institute of Technology Press.Google Scholar
  38. Pinker, S. (1984). Language learnability and language development. Cambridge, MA: Harvard University Press.Google Scholar
  39. Pinker, S. and Mehler J. (Eds.) (1988). Connections and Symbols. Cambridge, MA: The MIT Press.Google Scholar
  40. Rosenblatt, F. (1959). Two theorems of statistical separability in the perceptron(Proceedings of a symposium on the mechanization of thought processes). London: HM Stationery Office.Google Scholar
  41. Rumelhardt, D. E., McClelland, J. L., and the PDP Research Group. (1986). Parallel distributed processing: Explorations in the microstructures of cognition(2 vols.). Cambridge, MA: Massachusetts Institute of Technology Press.Google Scholar
  42. Shepherdson, J. C., and Sturgis, H. E. (1963). The computability of partial recursive functions. Journal of the Association of Computing Machinery, 10, 217–255.CrossRefGoogle Scholar
  43. Suppes, P. (1969). Stimulus-response theory of finite automata. Journal of Mathematical Psychology, 6, 327–355.CrossRefGoogle Scholar
  44. Suppes, P. (1977a). A survey of contemporary learning theories. In R. E. Butts and J. Hintikka (Eds.), Foundational problems in the special sciences(Part two of the Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, London, Ontario, Canada, 1975, pp. 217–239 ). Dordrecht, Holland: D. Reidel.Google Scholar
  45. Suppes, P. (1977b). Learning theory for probabilistic automata and register machines. In H. Spada and W. F. Kempf (Eds.), Structural models of thinking and learning(Proceedings of the 7th IPN-Symposium on Formalized Theories of Thinking and Learning and their Implications for Science Instruction, pp. 57–79). Bern: Hans Huber Publishers.Google Scholar
  46. Suppes, P. (1983). Learning language in the limit, review of K. Wexler and P. W. Culicover, Formal principles of language acquisition. Contemporary Psychology, 28, 5–6.Google Scholar
  47. Suppes, P., and Rottmayer, W. Automata. (1974). In E. C. Carterette and M. P. Friedman (Eds.), Handbook of perception(Vol. 1, pp. 335–362). New York: Academic Press.Google Scholar
  48. Suppes, P., Rouanet, H., Levine, M., and Frankmann, R. W. (1964). Empirical comparison of models for a continuum of responses with noncontingent bimodal reinforcement. In R. C. Atkinson (Ed.), Studies in mathematical psychology(pp. 358–379 ). Stanford, CA: Stanford University Press.Google Scholar
  49. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society, London, Series B 237, 37 - 72.CrossRefGoogle Scholar
  50. von Neumann, J. (1966). Theory of self-reproducing automata, edited by A. W. Burks. Urbana, IL: University of Illinois Press.Google Scholar
  51. Wexler, K., and Culicover, P. W. (1980). Formal principles of language acquisition. Cambridge, MA, and London, England: Massachusetts Institute of Technology Press.Google Scholar
  52. Wolfram, S. (1985). Undecidability and intractability in theoretical physics. Physical Review Letters, 54, 735–738.PubMedCrossRefGoogle Scholar
  53. Wolfram, S. (1986). Random sequence generation by cellular automata. Advances in Applied Mathematics, 7, 123–169.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  1. 1.Institute for Mathematical Studies in the Social SciencesStanford UniversityStanfordUSA

Personalised recommendations