The Linear Logistic Test Model and heterogeneity of cognitive strategies

  • Leo van Maanen
  • Pieter Been
  • Klaas Sijtsma
Part of the Recent Research in Psychology book series (PSYCHOLOGY)


Some properties of the Linear Logistic Test Model (LLTM) are discussed. Two prerequisites should be met in order to test a cognitive model by means of the LLTM. First, the items used in testing the cognitive model should make up a Rasch homogeneous scale. Second, the population under consideration should be homogeneous with regard to the cognitive strategy employed in solving items representing the task at hand. For a task consisting of solving balance problems it is demonstrated that the second prerequisite is not fulfilled As a consequence the LLTM does not fit for the whole population. By dividing the population into four strategy homogeneous subpopulations a fitting LLTM could be found within one of these subpopulations. Consequently, it is recommended that in using the LLTM for testing cognitive models the population under consideration should be investigated with respect to different cognitive strategies.


Cognitive Strategy Strategy Group Item Type Item Parameter Balance Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, E.B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123–140.CrossRefGoogle Scholar
  2. Baron, J. (1978). Intelligence and general strategies. In G. Underwood (Ed.), Strategies in Information Processing. London: Academic Press.Google Scholar
  3. Been, P.H., Jorna, R.J. & Sijtsma, K. (1984). Over kijken, meten en modellen bij breukrekentaken. In P.G. Vos, K.B. Koster Sc J. Kingma (Eds.). Rekenen. Balans van standpunten in theorievorming en empirisch onderzoek. Lisse: Swets & Zeitlinger.Google Scholar
  4. Bergan, J.R., Towstopiat, O., Cancelli, A.A. & Karp, C. (1982). Replacement and component rules in hierarchically ordered mathematics rule learning tasks. Journal of Educational Psychology, 74, 32–38.CrossRefGoogle Scholar
  5. Broadbent, D.E. (1984). The Maltese cross, a new simplistic model for memory. The Behavioral and’ Brain Sciences, 7, 55–95.CrossRefGoogle Scholar
  6. Brown, J.S. & VanLehn, K. (1980). Repair theory: a generative theory of bugs in procedural skills. Cognitive Science, 2, 379–426.CrossRefGoogle Scholar
  7. Butterfield, E.C. & Belmont, J.M. (1971). Relations of storage and retrieval strategies as short-term memory processes. Journal of Experimental Psychology, 89, 319–328.CrossRefGoogle Scholar
  8. Cooper, L.A. (1982). Strategies for Visual Comparison and Representation: Individual Differences. In R.J. Sternberg (Ed.). Advances in the Psychology of Human Intelligence. Hillsdale (N.J.): Lawrence Erlbaum.Google Scholar
  9. Feldt, L.S. (1965). The approximate sampling distribution of Kuder-Richardson reliability coefficient twenty. Psychometrika, 30, 357–370.PubMedCrossRefGoogle Scholar
  10. Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359–374.CrossRefGoogle Scholar
  11. Fischer, G.H. (1974). Einfiihrung in die Theorie psychologischer Tests. Bern: Huber.Google Scholar
  12. Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 3–26.CrossRefGoogle Scholar
  13. Fischer, G.H. & Formann, A.K. (1982). Some applications of logistic latent trait models with linear constraints on the parameters. Applied Psychological Measurement, 6, 397–416.CrossRefGoogle Scholar
  14. Groen, G.J. & Parkman, J.M. (1972). A chronometric analysis of simple addition, Psychological Review, 72, 329–343.CrossRefGoogle Scholar
  15. Haeussler, P. (1977). Investigation of mathematical reasoning in science problems. In H. Spada & W.F. Kempf (Eds.). Structural Models of Thinking and Learning. Bern: Huber.Google Scholar
  16. Hunt, E.B., Frost, N. & Lunneborg, C.L. (1973). Individual differences in cognition: A new approach to intelligence. In G. Bower (Ed.). The Psychology of Learning and Motivation. New York: Academic Press.Google Scholar
  17. Hunt, E.B., (1974). Quote the Raven? Nevermore! In L. Gregg (Ed.). Knowledge and Cognition. Hillsdale (N.J.): Lawrence Erlbaum.Google Scholar
  18. Kubinger, K.D. (1979). Das Problemlöseverhalten bei der statistischen Auswertung psychologischer Experimente. Ein Beispiel hochschuldidaktischer Forschung. Zeitschrift für experimentelle und angewandte Psychologie, 26, 467–495.Google Scholar
  19. Kubinger, K.D. (1980). Die Anwendung von Fischers linear logistischen Test Modell zur Leistungssteigerung in Lehrveranstaltungen — Einige neuere Ergebnisse. Archiv für Psychologie, 133, 69–79.PubMedGoogle Scholar
  20. Lewis, C. (1981). Skill in Algebra. In J.R. Anderson (Ed.). Cognitive skills and their acquisition. Hillsdale (N.J.): Lawrence Erlbaum.Google Scholar
  21. MacLeod, C.M., Hunt, E.B. & Mathews, N.N. (1978). Individual differences in the verification of sentence-picture relationships. Journal of Verbal Learning and Behavior, 17, 493–507.CrossRefGoogle Scholar
  22. Nährer, W. (1980). Zur Analyse von Matrizenaufgaben mit dem linearen logistischen Testmodell. Zeitschrift für experimentelle und angewandte Psychologie, 27, 553–564.Google Scholar
  23. Newell, A. (1973). You can’t play 20 questions with nature and win. In W.G. Chase (Ed.). Visual Information Processing. New York: Academic Press.Google Scholar
  24. Scheiblechner, H. (1972). Das Lernen und Lösen komplexer Denkaufgaben. Zeitschrift für experimentelle und angewandte Psychologie, 19, 476–506.Google Scholar
  25. Siegler, R.S. (1976). Three aspects of cognitive development. Cognitive Psychology, 8, 481–520.CrossRefGoogle Scholar
  26. Siegler, R.S. & Klahr, D. (1982). When do children learn? In R. Glaser (Ed.). Advances in Instructional Psychology, vol 2. Hillsdale (N.J.): Lawrence Erlbaum.Google Scholar
  27. Sijtsma, K. (1982). Een lineair logistisch model ter verklaring van de moeilijkheidspa-rameters van breukrekenitems. In J.G.L.C. Lodewijks & P.R.J. Simons (Eds.). Strategieén in leren en ontwikkeling. Lisse: Swets & Zeitlinger.Google Scholar
  28. Spada, H. (1976). Modelle des Denkens und Lernens. Bern: Huber.Google Scholar
  29. Sternberg, R.J. & Weil, E.M. (1980). An Aptitude x Strategy Interaction in Linear Syllogistic Reasoning. Journal of Educational Psychology, 72, 226–239.CrossRefGoogle Scholar
  30. Svenson, O. & Hedenborg, M.L. (1980). Strategies used by children when solving simple subtractions. Acta Psychologica, 4, 1–13.Google Scholar
  31. Underwood, G. (1978). Strategies of Information Processing. New York: Academic Press.Google Scholar
  32. van de Vijver, F.J.R. (1988). Systematizing the item content in test design. In R. Langeheine & J. Rost (Eds.). Latent Trait and Latent Class Models. New York: Plenum Press.Google Scholar
  33. Whitely, S.E. & Schneider, L.M. (1981). Information structure for geometric analo-gies: A test theory approach. Applied Psychological Measurement, 5, 383–397.CrossRefGoogle Scholar
  34. Wishart, D. (1978). CL USTAN 1C. Utrecht: Centrum voor Data-Analyse, Rijksuniversiteit Utrecht.Google Scholar
  35. Wollenberg, A.L. van den (1982). A simple and effective method to test the dimensionality axiom of the Rasch model. Applied Psychological Measurement, 6, 83–91.CrossRefGoogle Scholar
  36. Wood, R. (1978). Fitting the Rasch model — A heady tale. British Journal of Mathematical and Statistical Psychology, 31, 27–32CrossRefGoogle Scholar
  37. Young, R.M. (1978). Strategies and the structure of cognitive skill. In G. Underwood (Ed.). Strategies of Information Processing. New York: Academic Press.Google Scholar
  38. Zwarts, M.A. (1983). Criteriumtoetsen bij aansluiting van primair en secundair onderwijs. (unpublished dissertation). Rijksuniversiteit Utrecht.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Leo van Maanen
    • 1
    • 2
  • Pieter Been
    • 1
  • Klaas Sijtsma
    • 3
  1. 1.University of GroningenThe Netherlands
  2. 2.Interdisciplinary Center for the development of Computer coaches and Expert systemsGroningenthe Netherlands
  3. 3.Free University of AmsterdamThe Netherlands

Personalised recommendations