Pathophysiology and Treatment of Stroke

  • M. D. Ginsberg
Conference paper
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 9)

Abstract

A truly comprehensive exegesis of stroke pathophysiology and therapy would require an entire monograph. Indeed, several clinically oriented volumes are available, which can be strongly recommended [1, 2]. The goal of the present chapter, which of necessity must be more modest, will be to focus upon the topic of completed stroke of ischemic origin and to emphasize primarily
  1. a)

    recent advances in our understanding of how ischemia results in tissue injury and

     
  2. b)

    emerging therapeutic strategies directed at intervention in these pathomechanisms.

     

Keywords

Heparin Serotonin Cyanide Catalase Ceru 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hachinski V, Norris JW (1985) The acute stroke. FA Davis, PhiladelphiaGoogle Scholar
  2. 2.
    Barnett HJM, Stein BM, Mohr JP, Yatsu FM (1986) Stroke. Pathophysiology, diagnosis, and management. Churchill Livingstone, New YorkGoogle Scholar
  3. 3.
    Sokoloff L (1976) Circulation and energy metabolism of the brain. In: Siegel GJ, Albers RW, Katzman R, Agranoff BW (eds) Basic neurochemistry. Little, Brown & Co, Boston, pp 388–413Google Scholar
  4. 4.
    Heiss W-D (1983) Flow thresholds of functional and morphological damage of brain tissue. Stroke 14:329–331PubMedCrossRefGoogle Scholar
  5. 5.
    Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57PubMedCrossRefGoogle Scholar
  6. 6.
    Siesjö BK (1978) Brain energy metabolism. Wiley & Sons, ChichesterGoogle Scholar
  7. 7.
    Heiss W-D, Rosner G (1983) Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14:294–301PubMedCrossRefGoogle Scholar
  8. 8.
    Gibbs JM, Leenders KL, Wise RJS, Jones T (1984) Evulation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1:182–186PubMedCrossRefGoogle Scholar
  9. 9.
    Baron JC (1985) Positron tomography in cerebral ischemia. A review. Neuroradiology 27:509–516PubMedCrossRefGoogle Scholar
  10. 10.
    Wise RJS, Bernardi S, Frackowiak RSJ, Legg NJ, Jones T (1983) Serial observations on the pathophysiology of acute stroke. Brain 106:197–222PubMedCrossRefGoogle Scholar
  11. 11.
    Lenzi GL, Frackowiak RSJ, Jones T (1982) Cerebral oxygen metabolism and blood flow in human cerebral ischaemic infarction. J Cereb Blood Flow Metab 2:321–335PubMedCrossRefGoogle Scholar
  12. 12.
    Pantano P, Baron JC, Samson Y, Bousser MG, Derouesne C, Comar D (1986) Crossed cerebellar diaschisis. Further studies. Brain 109:677–694PubMedCrossRefGoogle Scholar
  13. 13.
    Genton E, Barnett HJM, Fields WS, Gent M, Hoak JC (1977) Cerebral ischemia: the role of thrombosis and of antithrombotic therapy. Stroke 8:148–175CrossRefGoogle Scholar
  14. 14.
    Katzman R, Clasen R, Klatzo I, Meyer JS, Pappius HM, Waltz AG (1977) Report of joint committee for stroke resources. Brain edema in stroke. Stroke 8:512–540PubMedCrossRefGoogle Scholar
  15. 15.
    Hsu CY, Faught RE, Furlan AJ, Coull BM, Huang DC, Hogan EL, Linet OI, Yatsu FM (1987) Intravenous prostacyclin in acute nonhemorrhagic stroke, a placebo-controlled double-blind trial. Stroke 18:352–358PubMedCrossRefGoogle Scholar
  16. 16.
    Hsu CY, Norris JW, Hogan EL, et al (1988) Pentoxifylline in acute nonhemorrhagic stroke. A randomized, placebo-controlled double-blind trial. Stroke 19:716–722PubMedCrossRefGoogle Scholar
  17. 17.
    Scandinavian Stroke Study Group (1988) Multicenter trial of hemodilution in acute ischemic stroke. Stroke 19:464–471CrossRefGoogle Scholar
  18. 18.
    Siesjö BK (1981) Review. Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1:155–185PubMedCrossRefGoogle Scholar
  19. 19.
    Raichle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13:2–10PubMedCrossRefGoogle Scholar
  20. 20.
    Carafoli E (1987) Intracellular calcium homeostasis. Ann Rev Biochem 56:395–433PubMedCrossRefGoogle Scholar
  21. 21.
    Harris RJ, Symon L (1984) Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex. J Cereb Blood Flow Metab 4:178–186PubMedCrossRefGoogle Scholar
  22. 22.
    Hass WK (1981) Beyond cerebral blood flow, metabolism, and ischemic thresholds: an examination of the role of calcium in the initiation of cerebral infarction. In: Meyer JS, Lechner H, Reivich M, et al (eds) Cerebral vascular disease 3. Proceedings of the 10th International Salzburg Conference, Excerpta Medica, Amsterdam, pp 3–17Google Scholar
  23. 23.
    Dienel GA (1984) Regional accumulation of calcium in postischemic rat brain. J Neurochem 43:913–925PubMedCrossRefGoogle Scholar
  24. 24.
    Harper AM, Craigen L, Kazda S (1981) Effect of the calcium antagonist, nimodipine, on cerebral blood flow and metabolism in the primate. J Cereb Blood Flow Metab 1:349–356PubMedCrossRefGoogle Scholar
  25. 25.
    Mohamed AA, Mendelow AD, Teasdale GM, Harper AM, McCulloch J (1985) Effect of the calcium antagonist nimodipine on local cerebral blood flow and metabolic coupling. J Cereb Blood Flow Metab 5:26–33PubMedCrossRefGoogle Scholar
  26. 26.
    Steen PA, Newberg LA, Milde JH, Michenfelder JD (1983) Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 3:38–43PubMedCrossRefGoogle Scholar
  27. 27.
    Steen PS, Newberg LA, Milde JH, Michenfelder JD (1984) Cerebral blood flow and neurologic outcome when nimodipine is given after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 4:82–87PubMedCrossRefGoogle Scholar
  28. 28.
    Vibulsresth S, Dietrich WD, Busto R, Ginsberg MD (1987) Failure of nimodipine to prevent ischemic neuronal damage in rats. Stroke 18:210–216PubMedCrossRefGoogle Scholar
  29. 29.
    Alps BJ, Hass WK (1987) The potential benefit of nicardipine in a rat model of transient forebrain ischemia. Neurology 37:809–814PubMedGoogle Scholar
  30. 30.
    Deshpande JK, Wieloch T (1986) Flunarizine, a calcium entry blocker, ameliorates ischemic brain damage in the rat. Anesthesiology 64:215–224PubMedCrossRefGoogle Scholar
  31. 31.
    Mohamed AA, Gotoh O, Graham DI, et al (1985) Effect of pretreatment with the calcium antagonist nimodipine on local cerebral blood flow and histopathology after middle cerebral artery occlusion. Ann Neurol 18:705–711PubMedCrossRefGoogle Scholar
  32. 32.
    Gotoh O, Mohamed AA, McCulloch J, Graham DI, Harper AM, Teasdale GM (1986) Nimodipine and the haemodynamic and histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:321–331PubMedCrossRefGoogle Scholar
  33. 33.
    Gelmers HJ, Goiter K, de Weerdt CJ, Wiezer HJA (1988) A controlled trial of nimodipine in acute ischemic stroke. N Engl J Med 318:203–207PubMedCrossRefGoogle Scholar
  34. 34.
    Nakayama H, Ginsberg MD, Dietrich WD (1988) (S)-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38:1667–1673PubMedGoogle Scholar
  35. 35.
    Schwarcz R, Meldrum B (1985) Excitatory amino acid antagonists provide a therapeutic approach to neurological disorders. Lancet 11:140–143CrossRefGoogle Scholar
  36. 36.
    Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain — focus on NMDA receptors. Trends Neurosci 10:263–265CrossRefGoogle Scholar
  37. 37.
    Meldrum B (1989) Excitotoxicity in ischemia: An overview. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 47–60Google Scholar
  38. 38.
    Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220:536–537PubMedCrossRefGoogle Scholar
  39. 39.
    Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891PubMedGoogle Scholar
  40. 40.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69PubMedCrossRefGoogle Scholar
  41. 41.
    Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 64:139–147CrossRefGoogle Scholar
  42. 42.
    Suzuki R, Yamaguchi T, Kirino T, Orzi F, Klatzo I (1983) The effects of 5-minute ischemia in Mongolian gerbils: I. Blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes. Acta Neuropathol (Berl) 60:207–216CrossRefGoogle Scholar
  43. 43.
    Drejer J, Benveniste H, Diemer NH, Schousboe A (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45:145–151PubMedCrossRefGoogle Scholar
  44. 44.
    Jorgensen MB, Johansen FF, Diemer NH (1987) Removal of the entorhinal cortex protects hippocampal CA1 neurons from ischemic damage. Acta Neuropathol (Berl) 73:189–194CrossRefGoogle Scholar
  45. 45.
    Wieloch T, Lindval O, Blomqvist P, Gage FH (1985) Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesion of the perforant path. Neurol Res 7:24–26PubMedGoogle Scholar
  46. 46.
    Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293–297PubMedCrossRefGoogle Scholar
  47. 47.
    Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111PubMedCrossRefGoogle Scholar
  48. 48.
    Rothman SM, Olney JW (1987) Excitotoxicity and the NMDA receptor. Trends Neurosci 10:299–302CrossRefGoogle Scholar
  49. 49.
    Petito CK, Feldmann E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286PubMedGoogle Scholar
  50. 50.
    Ginsberg MD, Graham DI, Busto R (1985) Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ann Neurol 18:470–481PubMedCrossRefGoogle Scholar
  51. 51.
    Globus MY-T, Ginsberg MD, Harik SI, Busto R, Dietrich WD (1987) Role of dopamine in ischemic striatal injury: metabolic evidence. Neurology 37:1712–1719PubMedGoogle Scholar
  52. 52.
    Globus MY-T, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1988) Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett 91:36–40PubMedCrossRefGoogle Scholar
  53. 53.
    Globus MY-T, Ginsberg MD, Dietrich WD, Busto R, Scheinberg P (1987) Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci Lett 80:251–256PubMedCrossRefGoogle Scholar
  54. 54.
    Globus MY-T, Mash DC, Dietrich WD, Busto R, Valdes I, Ginsberg MD (1988) Dopamine D-1 but not D-2 receptors are selectively vulnerable to transient ischemia in the rat striatum. Soc Neurosci Abstr 14:501Google Scholar
  55. 55.
    Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of AT-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852PubMedCrossRefGoogle Scholar
  56. 56.
    Shearman GT (1989) Effect of the NMDA antagonist MK-801 in animal models of focal and global cerebral ischemia. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 73–77Google Scholar
  57. 57.
    Graham DI, Ozyurt E, Park CK, Nehls DG, Teasdale GM, McCulloch J (1989) Protective effects of the NMDA antagonist, MK-801, on focal ischemic brain damage. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 65–72Google Scholar
  58. 58.
    Kochhar A, Zivin JA, Lyden PD, Mazzarella V (1988) Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. Arch Neurol 45:148–153PubMedCrossRefGoogle Scholar
  59. 59.
    Dietrich WD, Ginsberg MD, Busto R, Globus MY-T (1989) Influence of MK-801 on functional brain activation. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 79–85Google Scholar
  60. 60.
    Prince DA, Feeser HR (1988) Dextromethorphan protects against cerebral infarction in a rat model of hypoxia-ischemia. Neurosci Lett 85:291–296PubMedCrossRefGoogle Scholar
  61. 61.
    George CP, Goldberg MP, Choi DW, Steinberg GK (1988) Dextromethorphan reduces neo-cortical ischemic neuronal damage in vivo. Brain Res 440:375–379PubMedCrossRefGoogle Scholar
  62. 62.
    Steinberg GK, Saleh J, Kunis D (1988) Delayed treatment with dextromethorphan and dex-trorphan reduces cerebral damage after transient focal ischemia. Neurosci Lett 89:193–197PubMedCrossRefGoogle Scholar
  63. 63.
    Rosomoff HL (1957) Hypothermia and cerebral vascular lesions. Experimental interruption followed by inductions of hypothermia. Arch Neurol Psychiat 78:454–464Google Scholar
  64. 64.
    Busto R, Dietrich WD, Globus MY-T, Valdes I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738PubMedCrossRefGoogle Scholar
  65. 65.
    Busto R, Globus MY-T, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1989) Ischemia-induced release of neurotransmitters and free fatty acids in the rat brain: effect of mild intraischemic hypothermia. Stroke 20 (in review)Google Scholar
  66. 66.
    Myers RE, Yamaguchi S (1977) Nervous system effects of cardiac arrest in monkeys. Preservation of vision. Arch Neurol 34:65–74PubMedCrossRefGoogle Scholar
  67. 67.
    Welsh FA, Ginsberg MD, Rieder W, Budd WW (1980) Deleterious effect of glucose pre-treatment on recovery from diffuse cerebral ischemia in the cat. Regional metabolite levels. Stroke 11:355–363PubMedCrossRefGoogle Scholar
  68. 68.
    Rehncrona S, Rosen I, Siesjö BK (1981) Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab 1:297–311PubMedCrossRefGoogle Scholar
  69. 69.
    Kalimo H, Rehncrona S, Söderfeldt B, Olsson Y, Siesjö BK (1981) Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metab 1:313–327CrossRefGoogle Scholar
  70. 70.
    Ginsberg MD, Welsh FA, Budd WW (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. Local cerebral blood flow and glucose utilization. Stroke 11:347–354PubMedCrossRefGoogle Scholar
  71. 71.
    Pulsinelli WA, Waldman S, Rawlinson D, Plum F (1982) Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 32:1239–1246PubMedGoogle Scholar
  72. 72.
    Prado R, Ginsberg MD, Dietrich WD, Watson BD, Busto R (1988) Hyperglycemia increases infarct size in collaterally perfused but not end-arterial vascular territories. J Cereb Blood Flow Metab 8:186–192PubMedCrossRefGoogle Scholar
  73. 73.
    Nedergaard M, Diemer NH (1987) Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol (Berl) 73:131–137CrossRefGoogle Scholar
  74. 74.
    Kraig RP, Pulsinelli WA, Plum F (1985) Hydrogen ion buffering during complete brain ischemia. Brain Res 342:281–290PubMedCrossRefGoogle Scholar
  75. 75.
    Kraig RP, Pulsinelli WA, Plum F (1986) Carbonic acid buffer changes during complete brain ischemia. Am J Physiol 250:R348–R357PubMedGoogle Scholar
  76. 76.
    Plum F (1983) What causes infarction in the ischemic brain?: The Robert Wartenberg Lecture. Neurology 33:222–233PubMedGoogle Scholar
  77. 77.
    Pulsinelli WA, Levy DE, Sigsbee B, Scherer P, Plum F (1983) Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med 74:540–544PubMedCrossRefGoogle Scholar
  78. 78.
    Mohr JP, Rubenstein L, Edelstein SZ, et al (1985) Approaches to pathophysiology of stroke through the NINCDS data bank. In: Plum F, Pulsinelli WA (eds) Cerebrovascular diseases. Fourteenth Research (Princeton-Williamsburg) Conference. Raven Press, New York, pp 63–68Google Scholar
  79. 79.
    Cross CE, Halliwell B, Borish ET, et al (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545PubMedGoogle Scholar
  80. 80.
    Kontos HA (1989) Oxygen radicals in cerebral ischemia. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 365–371Google Scholar
  81. 81.
    Yoshida S, Abe K, Busto R, Watson BD, Kogure K, Ginsberg MD (1982) Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res 245:307–316PubMedCrossRefGoogle Scholar
  82. 82.
    Watson BD, Ginsberg MD (1988) Mechanisms of lipid peroxidation potentiated by ischemia in brain. In: Halliwell B (ed) Oxygen radicals and tissue injury. Proceedings of a Brook Lodge Symposium, FASEB, Bethesda, pp 81–91Google Scholar
  83. 83.
    Watson BD, Busto R, Goldberg WJ, Santiso M, Yoshida S, Ginsberg MD (1984) Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem 42:268–274PubMedCrossRefGoogle Scholar
  84. 84.
    Ginsberg MD, Watson BD, Busto R, et al (1989) Peroxidative damage to cell membranes following cerebral ischemia — a cause of ischemic brain injury? Neurochem Pathol (in press)Google Scholar
  85. 85.
    Wei EP, Kontos HA (1987) Oxygen radicals in cerebral ischemia. Physiologist 30:122Google Scholar
  86. 86.
    Beckman JS, Liu TH, Hogan EL, Lindsay SL, Freeman BA, Hsu CY (1989) Evidence for a role of oxygen radicals in cerebral ischemic injury. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 373–380Google Scholar
  87. 87.
    Davis RJ, Bulkley GB, Traystman RJ (1987) Role of oxygen-free radicals in focal brain ischemia. J Cereb Blood Flow Metab 7:S10Google Scholar
  88. 88.
    von Monakow C (1914) Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde. JF Bergmann, WiesbadenGoogle Scholar
  89. 89.
    Feeney DM, Baron J-C (1986) Diaschisis. Stroke 17:817–830PubMedCrossRefGoogle Scholar
  90. 90.
    Dietrich WD, Ginsberg MD, Busto R, Watson BD (1986) Photochemically induced cortical infarction in the rat. Time course of hemodynamic consequences. J Cereb Blood Flow Metab 6:184–194PubMedCrossRefGoogle Scholar
  91. 91.
    Dietrich WD, Ginsberg MD, Busto R, Watson BD (1986) Photochemically induced cortical infarction in the rat. Acute and subacute alterations in local glucose utilization. J Cereb Blood Flow Metab 6:195–202PubMedCrossRefGoogle Scholar
  92. 92.
    Dietrich WD, Busto R, Ginsberg MD (1989) The serotonin antagonist ketanserin inhibits the early remote hemodynamic consequences of photochemically induced cortical infarction. In: Krieglstein J (ed) Pharmacology of cerebral ischemia. Elsevier, Amsterdam (in press)Google Scholar
  93. 93.
    Ginsberg MD, Castella Y, Dietrich WD, Watson BD, Busto R (1989) Acute thrombotic infarction suppresses metabolic activation of ipsilateral somatosensory cortex: Evidence for functional diaschisis. J Cereb Blood Flow Metab 9 (in press)Google Scholar
  94. 94.
    Dietrich WD, Ginsberg MD, Busto R (1986) Effect of transient cerebral ischemia on metabolic activation of a somatosensory circuit. J Cereb Blood Flow Metab 6:405–413PubMedCrossRefGoogle Scholar
  95. 95.
    Feeney DM, Gonzales A, Law WA (1982) Amphetamine, haloperidol and experience interact to affect rate of recovery after motor cortex injury. Science 217:855–857PubMedCrossRefGoogle Scholar
  96. 96.
    Hovda DA, Fenney DM (1984) Amphetamine with experience promotes recovery of loco-motor function after unilateral frontal cortex injury in the cat. Brain Res 298:358–361PubMedCrossRefGoogle Scholar
  97. 97.
    Feeney DM, Hovda DA (1985) Reinstatement of binocular depth perception by amphetamine and visual experience after visual cortex ablation. Brain Res 342:352–356PubMedCrossRefGoogle Scholar
  98. 98.
    Crisostomo EA, Duncan PW, Propst M, Dawson DV, Davis JN (1988) Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann Neurol 23:94–97PubMedCrossRefGoogle Scholar
  99. 99.
    Hernandez TD, Kiefel J, Barth TM, Grant ML, Schallert T (1989) Disruption and faciliation of recovery of behavioral function: Implication of the gamma-aminobutyric acid/ benzodiazepine receptor complex. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 327–334Google Scholar
  100. 100.
    Del Zoppo GJ, Zeumer H, Harker LA (1986) Thrombolytic therapy in stroke: possibilities and hazards. Stroke 17:595–607PubMedCrossRefGoogle Scholar
  101. 101.
    Hacke W, Zeumer H, Ferbert A, Brückmann H, del Zoppo GJ (1988) Intra-arterial thrombolytic therapy improves outcome in patients with acute vertebrobasilar occlusive disease. Stroke 19:1216–1222PubMedCrossRefGoogle Scholar
  102. 102.
    Verstraete M, Collen D (1986) Thrombolytic therapy in the eighties. Blood 67:1529–1541PubMedGoogle Scholar
  103. 103.
    Papadopoulos SM, Chandler WF, Salamat MS, Topol EJ, Sackellares JC (1987) Recombinant human tissue-type plasminogen activator therapy in acute thromboembolic stroke. J Neurosurg 67:394–398PubMedCrossRefGoogle Scholar
  104. 104.
    Levy DE, Brott T, Haley EC, Barsan WG, Olinger CP, Reed RL, Marier JR (1989) A safety study of tissue plasminogen activator (rt-PA) in the hyperacute phase of ischemic stroke. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 21–27Google Scholar
  105. 105.
    Zivin JA (1989) A perspective on the future of thrombolytic stroke therapy. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases — Sixteenth Research (Princeton) Conference. Raven Press, New York, pp 33–37Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. D. Ginsberg

There are no affiliations available

Personalised recommendations