Skip to main content

Encephalopathy Associated with Sepsis

  • Conference paper
Brain Failure

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 9))

  • 70 Accesses

Abstract

Whilst many investigators agree that a ‘clouding of consciousness’ is perhaps the most common disturbance in organ function associated with septic shock, proven severe systemic sepsis or even the more nebulous ‘septic syndrome’, it is still not clear exactly what are the relationships between fever, acute confusional states (often described loosely as a form of ‘delirium’ and most commonly observed in the elderly who may well be hypothermic), stupor and frank coma and how these different disturbances in brain function relate to so-called ‘septic encephalopathy’ and other organ system dysfunction [1]. One problem that is inherent in all the recent discussions of ‘multiple organ failure’, ‘critical illness’ associated with sepsis and trauma etc. has been the unstated supposition that one identifiable mechanism can account for all the metabolic and functional disturbances seen in these patients [2]. This, in my opinion, is patently not the case and when ‘septic encephalopathy’ is considered in isolation from other organ failure, it becomes apparent that various processes are at work at different times of the illness which can account for the observed disturbances in brain function. Drugs, alcohol and alcohol (or other drug) withdrawal obviously confuse the issue (and the patient!); this subject has been dealt with elsewhere. Drug-induced brain dysfunction is one important factor in the apparent reversibility of ‘septic encephalopathy’. It probably accounts fot the majority of patients with severe sepsis and abnormal brain function who also have disturbances in hepatic and renal function and who suddenly ‘wake up’ as their underlying condition improves. At the same time, their medications are stopped whilst there are spontaneous improvements in hepatic and renal drug clearance. Thus it is difficult to identify patients suffering only from ‘septic encephalopathy’ and this limits our ability to study the pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolten C, Young G (1986) Sepsis and septic shock: central and peripheral nervous systems. In: Sibbald W, Sprung C (eds) Perspectives on sepsis and septic shock, new horizons, vol 1. Society of Critical Care Medicine, Fullerton, California, pp 157–171

    Google Scholar 

  2. Cerra F, West M, Keller G, Mazuski J, Simmons R (1988) Hypermetabolism and organ failure — the role of the activated macrophage as a metabolic regulator. In: Bond R, Adams H, Chaudry I (eds) Perspectives in shock ressearch, progress in clinical and biological research, vol 264. Liss, New York, pp 27–42

    Google Scholar 

  3. Cheung J, Bonventre J, Malis C, Leaf A (1986) Calcium and ischaemic injury. N Engl J Med 314:1670–1676

    Article  PubMed  CAS  Google Scholar 

  4. Krause G, White B, Aust S, Nayini N, Kumar K (1988) Brain cell death following ischaemia and reperfusion: a proposed biochemical sequence. Crit Care Med 16:714–726

    Article  PubMed  CAS  Google Scholar 

  5. Bihari D, Tinker J (1988) The therapeutic value of vasodilator prostaglandins in multiple organ failure associated with sepsis. Intensive Care Med 15:2–7

    Article  PubMed  CAS  Google Scholar 

  6. Bihari D, Cerra F (eds) (1988) Multiple organ failure, new horizons, vol 3. Society of Critical Care Medicine, Fullerton, California

    Google Scholar 

  7. Movat H, Cybulsky M, Colditz I, Chan M, Dinarello C (1987) Acute inflammation in gram negative infection: endotoxin, interleukin 1, tumor necrosis factor and neutrophils. Fed Proc 46:97–104

    PubMed  CAS  Google Scholar 

  8. Beutler B, Cerami A (1987) Cachectin: more than a tumor necrosis factor. N Engl J Med 316:379–385

    Article  PubMed  CAS  Google Scholar 

  9. Weiss S (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Article  PubMed  CAS  Google Scholar 

  10. Bihari D (1987) Mismatch of the oxygen supply and demand in septic shock. In: Vincent JL, Thijs LG (eds) Septic shock — an european view. Springer, Berlin New York Tokyo, pp 148–160

    Chapter  Google Scholar 

  11. Cain S (1984) Supply dependency of oxygen uptake in the adult respiratory distress syndrome — myth or reality? Am J Med Sci 288:119–124

    Article  PubMed  CAS  Google Scholar 

  12. Schumacker P, Cain S (1987) The concept of a critical oxygen delivery. Intensive Care Med 13:223–229

    Article  PubMed  CAS  Google Scholar 

  13. Gutierrez G, Pohil R (1986) Oxygen consumption is linearly related to the oxygen supply in critically ill patients. J Crit Care 1:45–53

    Article  Google Scholar 

  14. Astiz M, Rackow E, Falk J, Kauman B, Weil M (1987) Oxygen delivery and consumption in patients with hyperdynamic septic shock. Crit Care Med 15:26–28

    Article  PubMed  CAS  Google Scholar 

  15. Bihari D (1988) Oxygen delivery and consumption in the critical ill; their relation to the development of multiple organ failure. In: Kox W, Bihari D (eds) Shock and the adult respiratory distress syndrome. Springer, Berlin Heidelberg New York Tokyo, pp 95–124

    Chapter  Google Scholar 

  16. Bryan-Brown C (1988): Blood flow to organs: parameters for function and survival in critical illness. Crit Care Med 16:170–178

    Article  PubMed  CAS  Google Scholar 

  17. Garlick R, Bihari D (1987) The use of intermittent and continuous recordings of jugular venous bulb oxygen saturation in the unconscious patient. Scand J Clin Lab Invest (Suppl 188): 47–52

    Google Scholar 

  18. Westaby S (1986) Mechanisms of membrane damage and surfactant depletion in acute lung injury. Intensive Care Med 12:2–5

    Article  PubMed  CAS  Google Scholar 

  19. Hyers T, Gee M, Andreadis N (1987) Cellular interactions in the multiple organ injury syndrome. Am Rev Respir Dis 135:952–953

    PubMed  CAS  Google Scholar 

  20. Demling R (1988) The role of mediators in human ARDS. J Crit Care 3:56–72

    Article  CAS  Google Scholar 

  21. Farber J (1982) Membrane injury and calcium homeostasis in the pathogenesis of coagula-tive necrosis. Lab Invest 47:114–123

    PubMed  CAS  Google Scholar 

  22. Patt A, Harken A, Burton L, et al (1988) Xanthine oxidase derived hydrogen peroxide contributes to ischaemia reperfusion induced edema in gerbil brains. J Clin Invest 81:1556–1562

    Article  PubMed  CAS  Google Scholar 

  23. Carrico C, Meakins J, Marshall J, Fry D, Maier R (1986) Multiple organ failure syndrome. Arch Surg 121:196–208

    Article  PubMed  CAS  Google Scholar 

  24. Goris R, te Boekhorst T, Nuytinck J, Gimbrere J (1985) Multiple organ failure: generalized autodestructive inflammation. Arch Surg 120:1109–1115

    Article  PubMed  CAS  Google Scholar 

  25. Brigham K, Meyrick B (1986) Endotoxin and lung injury. An Rev Respir Dis 133:913–927

    CAS  Google Scholar 

  26. Baker J, Deitch E, Berg R, Specian R (1988) Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 28:896–906

    Article  PubMed  CAS  Google Scholar 

  27. Kuschinsky W, Wahl M (1978) Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol Rev 58:656–689

    PubMed  CAS  Google Scholar 

  28. Siesjö B (1984) Cerebral circulation and metabolism. J Neurosurg 60:883–908

    Article  PubMed  Google Scholar 

  29. Siesjö B (1987) Critical degrees of hypoxia and ischemia when cerebral function and metabolism are perturbed. In: Bryan-Brown C, Ayres S (eds) Oxygen transport and utilisation, new horizons, vol 2. Society of Critical Care Medicine, Fullerton, California, pp 293–310

    Google Scholar 

  30. Procter H, Palladino G, Fillipo D (1988) Failure of autoregulation after closed head injury; an experimental model. J Trauma 28:347–352

    Article  Google Scholar 

  31. Pendlebury W, Perl D, Karibo R, et al (1983) Disseminated microabscesses of the central nervous system. Neurology 33:223

    Google Scholar 

  32. Fischer J, Funovies J, Aguirre A (1975) The role of plasma aminoacids in hepatic encephalopathy. Surgery 78:276–283

    PubMed  CAS  Google Scholar 

  33. Jeppson B, Freund H, Gimmon Z, et al (1981) Bloodbrain barrier in sepsis. Cause of septic encephalopathy? Am J Surg 141:13

    Article  Google Scholar 

  34. Bone R, Fisher C, Clemmer T, Slotman G, Metz C, Balk R and the Methylprednisolone severe sepsis study group (1987) A controlled clinical trial of high dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317:653–658

    Article  PubMed  CAS  Google Scholar 

  35. Veterans Administration Systemic Sepsis Cooperative Study Group (1987) Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med 317:659–665

    Article  Google Scholar 

  36. Hallenbeck J, Leiitch D, Dutka A, Greenbaum L, McKee A (1982) Prostaglandin I2, indom-ethacin and heparin promote postischemic neuronal recovery in dogs. Ann Neurol 12:145–156

    Article  PubMed  CAS  Google Scholar 

  37. Kochanek P, Dutka A, Hallenbeck J (1987) Indomethacin, prostacyclin and heparin improve cerebral blood flow without affecting early post-ischaemic granulocyte accumulation. Stroke 18:634–637

    Article  PubMed  CAS  Google Scholar 

  38. Klein J, Feigin R, McCracken G (1986) Report of the task force on diagnosis and treatment of meningitis. Paediatrics 78 (suppl):959–982

    CAS  Google Scholar 

  39. Sande M, Scheid W, McCracken G (1987) Summary of a workshop: pathophysiology of bacterial meningitis, implications for new management strategies. Pediatr Infect Dis J 6:1167–1171

    Google Scholar 

  40. Tauber M, Brooks-Fournier R, Sande M (1986) Experimental models of CNS infections-contributions to concepts of disease and treatment. Neurol Clin 4:249–264

    PubMed  CAS  Google Scholar 

  41. Scheid W (1987) Morphofunctional alterations of the blood brain barrier during experimental meningitis. Pediatr Infect Dis J 6:1145–1146

    Google Scholar 

  42. Tureen J, Stella F, Clyman R, Mauray F, Sande M (1987) Effect of indomethacin on brain water content, cerebrospinal fluid white blood cell response and prostaglandin E2 levels in cerebrospinal fluid in experimental meningitis in rabbits. Pediatr Infect Dis J 6:1151–1153

    Google Scholar 

  43. Lebel M, Freij B, Syrogiannopoulos G, et al (1988) Dexamethasone therapy for bacterial meningitis — results of two double-blind, placebo controlled trials. N Engl J Med 319:964–971

    Article  PubMed  CAS  Google Scholar 

  44. Smith A (1988) Neurologic sequelae of meningitis. N Engl J Med 319:1012–1014

    Article  PubMed  CAS  Google Scholar 

  45. Sapolsky R, Pulsinelli W (1985) Glucocorticoids potentiate ischemic injury to neurons-therapeutic implications. Science 229:1397–1400

    Article  PubMed  CAS  Google Scholar 

  46. Hoffman S, Punjabi N, Kumala S, et al (1984) Reduction of mortality in chloramphenicol treatment severe typhoid fever by high dose dexamethasone. N Engl J Med 310:82–88

    Article  PubMed  CAS  Google Scholar 

  47. Goitein K, Tamir I (1983) Cerebral perfusion pressure in central nervous system infections of infancy and childhood. J Paediatrics 103:40–43

    Article  CAS  Google Scholar 

  48. Locareesuwan S, Warrell D, White N, et al (1983) Do patients with cerebral malaria have cerebral oedema? A computed tomography study. Lancet 1:434–437

    Article  Google Scholar 

  49. Hoffman E, Punjabi N, Sanjaya B, McKee K, Cambell J, Laughlin L (1988). High dose dexamethasone in quinine treated patients with cerebral malaria — a double-blind, placebo controlled trial. J Inf Dis 158:325–331

    Article  CAS  Google Scholar 

  50. Warrell D, Looaressuwan S, Warrell M, et al (1982) Dexamethasone proves deleterious in cerebral malaria: a double-blind trial in 100 comatose patients. N Engl J Med 306:313–319

    Article  PubMed  CAS  Google Scholar 

  51. Warrell D, White N, Veall N, et al (1988) Cerebral anaerobic glycolysis and reduced cerebral oxygen transport in human cerebral malaria. Lancet 2:534–538

    Article  PubMed  CAS  Google Scholar 

  52. Robertson C, Grossman R, Goodman J, Narayan R (1987) The predictive value of cerebral anaerobic metabolism with cerebral infarction after head injury. J Neurosurg 67:361–368

    Article  PubMed  CAS  Google Scholar 

  53. Shaw P, Bates D, Cartlidge N, Heaviside D, Julian D, Shaw D (1985) Early neurological complications of coronary artery bypass surgery. BMJ 291:1384–1387

    Article  PubMed  CAS  Google Scholar 

  54. Gilston A (1986) Brain damage after cardiac surgery. Lancet 1:1323

    Article  PubMed  CAS  Google Scholar 

  55. Blauth C, Arnold J, Kohner E, Taylor K (1986) Retinal microembolism during cardiopulmonary bypass demonstrated by fluorescein angiography. Lancet 2:837–839

    Article  PubMed  CAS  Google Scholar 

  56. Smith P, Treasure T, Newman S, Joseph P, Ell P, Schneidau A, Harrison M (1986) Cerebral consequences of cardiopulmonary bypass. Lancet 1:823–825

    Article  PubMed  CAS  Google Scholar 

  57. Nevin M, Colchester A, Adams S, Pepper J (1987) Evidence for the involvement of hypocapnia and hypoperfusion in aetiology of neurological deficit after cardiopulmonary bypass. Lancet 2:1493–1495

    Article  PubMed  CAS  Google Scholar 

  58. Bihari D, Smithies M, Gimson A, Tinker J (1987) The effect of vasodilatation with prostacyclin on oxygen delivery and uptake in critically ill patients. N Engl J Med 317:397–403

    Article  PubMed  CAS  Google Scholar 

  59. Frackowiak R, Lenzi GL, Jones T, et al (1980) Quantitative measurement of regional cerebral blood flow in man using 150 and positron emission tomography: Theory, procedure and normal values. J Computer Assisted Tomography 4:727–736

    Article  CAS  Google Scholar 

  60. Reynolds E, Wyatt J, Azzopardi D, et al (1988) New non-invasive methods for assessing brain oxygenation and haemodynamics. Br Med Bull 44:1052–1075

    PubMed  CAS  Google Scholar 

  61. Rasanen J (1988) Dual oximetry. In: Vincent JL (ed) Update in intensive care and emergency medicine, vol 5. Springer, Berlin Heidelberg New York Tokyo, pp 436–441

    Google Scholar 

  62. Davis J, Carlsson A, MacMillan V, Siesjö B (1973) Brain tryptophan hydroxylation: dependence on arterial oxygen tension. Science 182:72–74

    Article  PubMed  CAS  Google Scholar 

  63. Davis J, Carlsson A (1973) Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanaesthetized rat brain. J Neurochem 20:913–915

    Article  PubMed  CAS  Google Scholar 

  64. Gibson G, Pulsinelli W, Blas J, Duffy T (1981) Brain dysfunction in mild to moderate hypoxia. Am J Med 70:1247–1254

    Article  PubMed  CAS  Google Scholar 

  65. Epstein F, Balaban R, Ross B (1982) Redox state of cytochrome aa3 in isolated perfused rat kidney. Am J Physiol 243:F356–F363

    PubMed  CAS  Google Scholar 

  66. West J (1982) Man at extreme altitude. J Appl Physiol 52:1393–1399

    PubMed  CAS  Google Scholar 

  67. West J (1986) Do climbs to extreme altitude cause brain damage? Lancet 2:387–388

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bihari, D. (1989). Encephalopathy Associated with Sepsis. In: Bihari, D., Holaday, J.W. (eds) Brain Failure. Update in Intensive Care and Emergency Medicine, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83929-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83929-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51655-2

  • Online ISBN: 978-3-642-83929-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics