Phases of the Systems A-La-Ca-Cu-O and A-Y-Ca-Cu-O (A = Ca, Sr, Ba): Structural Aspects

  • Bernard Raveau
  • Claude Michel
  • Maryvonne Hervieu
  • Daniel Groult
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 15)


Consideration of the relationships between the crystal chemistry of the oxides and their electron transport properties suggests that the metal atoms M that contribute to the framework of MOn polyhedra should exhibit a mixed valence in order to obtain metallic or semimetallic conductivity. This concept is of central importance in the search for new materials with such physical properties. It leads to the conclusion that the metal atom M should present at least two oxidation states simultaneously in the same compound, and thus should be a transition metal. This is indeed the case for oxides involving Ti(III)/Ti(IV) or W(VI)/W(V) or V(V)/V(IV), which are called oxygen bronzes. The case of copper is exceptional due to the fact that the two oxidation states present are Cu(II) and Cu(I), and that Cu(I) implies a localization of the electron on the atom, which would not lead to any metallic behavior. The possibility of generating copper oxides with metallic properties was considered in Caen as early as 1979 on the basis of a mixed valence Cu(II)/Cu(III). Nevertheless, such an idea appeared at that time difficult to implement easily, since the only Cu(III) oxide which was known was the perovskite LaCuO3, which had been synthesized only under a high oxygen pressure of about 60 kbar in Bordeaux. Here we describe first the main features governing the chemistry of copper in the oxides that determined the choice of systems in the search for new phases with anisotropic metallic


Oxygen Flow Anionic Vacancy Mixed Valence Electron Transport Property Planar Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    J.B. Goodenough, N.F. Mott, M. Pouchard, G. Demazeau, P. Hagenmuller: Mater. Res. Bull. 8, 647 (1973)CrossRefGoogle Scholar
  2. 2.2
    L. Orgel: An Introduction to Transition Metal Chemistry,2nd ed. (Wiley, New York 1966)Google Scholar
  3. 2.3
    G. Demazeau, C. Parent, M. Pouchard, P. Hagenmuller: Mater. Res. Bull. 7, 913 (1972)CrossRefGoogle Scholar
  4. 2.4
    B. Raveau: Proc. Indian Natl. Sci. Acad. 52A, 67 (1986)Google Scholar
  5. 2.5
    A. Relier, D.A. Jefferson, J.M. Thomas, M. Kuppal: Proc. R. Soc. London A 394, 224 (1984); J. Phys. Chem. 87, 913 (1983)ADSGoogle Scholar
  6. 2.6
    S.R. Ruddelesden, P. Popper: Acta Crystallogr. 10, 538 (1957); ibid. 11, 54 (1958)CrossRefGoogle Scholar
  7. 2.7
    J.M. Longo, P.M. Raccah: J. Solid State Chem. 6, 526 (1973)ADSCrossRefGoogle Scholar
  8. 2.8
    B. Grande, H.K. Müller-Buschbaum, M. Schweizer: Z. Anorg. Allg. Chem. 428, 120 (1977)CrossRefGoogle Scholar
  9. 2.9
    H.K. Müller-Buschbaum, W. Wollschlager: Z. Anorg. Allg. Chem. 414, 76 (1975); ibid. 428, 120 (1977)CrossRefGoogle Scholar
  10. 2.10
    Y. Tokura, H. Takagi, S. Uchida: Nature 337, 345 (1989)ADSCrossRefGoogle Scholar
  11. 2.11
    H. Takagi, S. Uchida, Y. Tokura: Phys. Rev. Lett. 62, 1197 (1989)ADSCrossRefGoogle Scholar
  12. 2.12
    J.T. Markert, M.B. Maple: Solid State Commun. 70, 145 (1989)ADSCrossRefGoogle Scholar
  13. 2.13
    C.L. Teske, H.K. Müller-Buschbaum: Z. Anorg. Allg. Chem. 371, 325 (1969)CrossRefGoogle Scholar
  14. 2.14
    C.L. Teske, H.K. Müller-Buschbaum: Z. Anorg. Allg. Chem. 379, 234 (1970); ibid. 377, 144 (1970)CrossRefGoogle Scholar
  15. 2.15
    C.L. Teske, H.K. Müller-Buschbaum: Z. Anorg. Allg. Chem. 370, 134 (1969)CrossRefGoogle Scholar
  16. 2.16
    D.M. de Leeuw, C. Mutsaers, C. Langereis, H. Smoorenburg, P. Rommers: Physica C 152, 39 (1988)ADSCrossRefGoogle Scholar
  17. 2.17
    T. Rouillon, M. Hervieu, B. Raveau: Private communicationGoogle Scholar
  18. 2.18
    R. Kipka, H.K. Müller-Buschbaum: Z. Naturforsch. B 32, 121 (1977)Google Scholar
  19. 2.19
    M. Arjomand, D. Machin: J. Chem. Soc., Dalton. Trans. 10, 61 (1975)Google Scholar
  20. 2.20
    L. Teske, H. Müller-Buschbaum: Z. Naturforsch. B 27, 296 (1972)Google Scholar
  21. 2.21
    C. Michel, L. Er-Rakho, N. Hervieu, J. Pannetier, B. Raveau: J. Solid State Chem. 68, 143 (1987)ADSCrossRefGoogle Scholar
  22. 2.22
    J.G. Bednorz, K.A. Müller: Z. Phys. B 64, 189 (1986)ADSCrossRefGoogle Scholar
  23. 2.23
    L. Er-Rakho, C. Michel, B. Raveau: J. Solid State Chem. 73, 514 (1988); J. Phys. Chem. Solids 49, 451 (1988)ADSCrossRefGoogle Scholar
  24. 2.24
    L. Er-Rakho, C. Michel, J. Provost, B. Raveau: J. Solid State Chem. 37, 151 (1981)ADSCrossRefGoogle Scholar
  25. 2.25
    W. David, W. Harrison, M. Ibberson, M. Weller, J.R. Grasmeder, P. Lanchester: Nature 328, 328 (1987)ADSCrossRefGoogle Scholar
  26. 2.26
    M. Hervieu, B. Domenges, F. Deslandes, C. Michel, B. Raveau: C.R. Acad. Sci. 307, serie II, 1444 (1988); Angew. Chem. 27, 440 (1988)Google Scholar
  27. 2.27
    C. Michel, B. Raveau: Rev. Chim. Miner. 21, 407 (1984)Google Scholar
  28. 2.28
    T. Fujita, Y. Aoki, Y. Maeno, J. Sakurai, H. Fukuba, H. Fujii: Jpn. J. Appl. Phys. 26, 202 (1987)CrossRefGoogle Scholar
  29. 2.29
    N. Nguyen, J. Choisnet, M. Hervieu, B. Raveau: J. Solid State Chem. 39, 120 (1981)ADSCrossRefGoogle Scholar
  30. 2.30
    J.B. Goodenough, G. Demazeau, M. Pouchard, P. Hagenmuller: J. Solid State Chem. 8, 325 (1973)ADSCrossRefGoogle Scholar
  31. 2.31
    N. Nguyen, L. Er-Rakho, C. Michel, J. Choisnet, B. Raveau: Mater. Res. Bull. 15, 891 (1980)CrossRefGoogle Scholar
  32. 2.32
    R.J. Cava, B. Battlog, R.B. van Dover, J.J. Krajewski, J.W. Waszczak, R.M. Fleming, W.F. Peck, L.W. Rupp, P. Marsh, A.C. James, L.F. Schneemeyer: Nature 345, 602 (1990)ADSCrossRefGoogle Scholar
  33. 2.33
    C. Michel, L. Er-Rakho, B. Raveau: J. Solid State Chem. 39, 161 (1981)ADSCrossRefGoogle Scholar
  34. 2.34
    R.S. Roth, K.L. Davis, J.R. Dennis: Adv. Ceram. Mater. 2 (3B), 303 (1987)ADSGoogle Scholar
  35. 2.35
    R. Famery, F. Queyroux: Mat. Res. Bull. 24, 275 (1989)CrossRefGoogle Scholar
  36. 2.36
    M.R. Freund, H.Z. Müller-Buschbaum: Z. Naturforsch. B 32, 609 (1977)Google Scholar
  37. 2.37
    T. Ishiguro, N. Ishizana, N. Mizutani, H. Kato: J. Solid State Chem. 49, 232 (1983)ADSCrossRefGoogle Scholar
  38. 2.38
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Z. Wang, C.W. Chu: Phys. Rev. Lett. 58, 908 (1987)ADSCrossRefGoogle Scholar
  39. 2.39
    R.J. Cava, B. Battlog, R.B. Vandover, D.N. Murphy, S. Sunshine, T. Siegrist, J.P. Remeika, E.A. Rietman, S. Zahurak, G.P. Espinosa: Phys. Rev. Lett. 58, 1676 (1987)ADSCrossRefGoogle Scholar
  40. 2.40
    C. Michel, F. Deslandes, J. Provost, P. Lejay, R. Tournier, M. Hervieu, B. Raveau: C.R. Acad. Sci. 304, 1050 (1987)Google Scholar
  41. 2.41
    Y. Lepage, W.R. McKinnon, J.M. Tarascon, L.H. Greene, G.N. Hull, D.M. Hwang: Phys. Rev. B 35, 7245 (1987)ADSCrossRefGoogle Scholar
  42. 2.42
    G. Roth, D. Ewert, G. Heger, C. Michel, M. Hervieu, B. Raveau, F. D’Yvoire, A. Revcolevschi: Z. Phys. B 69, 21 (1987)ADSCrossRefGoogle Scholar
  43. 2.43
    M.A. Beno, L. Soderholm, D.W. Capone, D. Hinks, J.O. Jorgensen, I.K. Schuller, C.U. Segre, K. Zhang, J.D. Grace: Appl. Phys. Lett. 51, 57 (1987)ADSCrossRefGoogle Scholar
  44. 2.44
    J. Capponi, C. Chaillout, A.W. Hewat, P. Le jay, M. Marezio, N. Nguyen, B. Raveau, J.L. Soubeyroux, J.L. Tholence, R. Tournier: Europhys. Lett. 12, 1301 (1987)ADSCrossRefGoogle Scholar
  45. 2.45
    F. Izumi, H. Azano, T. Ishigaki, E. Takayama, Y. Uchida, N. Watanabe, T. Nishikawa: Jpn. J. Appl. Phys. 26, 649 (1987)ADSCrossRefGoogle Scholar
  46. 2.46
    F. Izumi, H. Azano, T. Ishigaki, E. Takayama, Y. Uchida, N. Watanabe: Jpn. J. Appl. Phys. 26, 1214 (1987)ADSCrossRefGoogle Scholar
  47. 2.47
    J.D. Jorgensen, M. Beno, D.G. Hinks, L. Soderholm, K.J. Volkin, R.L. Hitter-man, J.D. Grace, I.K. Schuller, C.U. Segre, K. Zhang, M.S. Kleefisch: Phys. Rev. B 36, 3608 (1987)ADSCrossRefGoogle Scholar
  48. 2.48
    B. Domenges, M. Hervieu, V. Caignaert, B. Raveau, J.L. Tholence, R. Tournier: J. Microsc. Spectrosc. Electron. 13, 75 (1988)Google Scholar
  49. 2.49
    G. Roth, B. Renker, G. Heger, M. Hervieu, B. Domenges, B. Raveau: Z. Phys. B 69, 53 (1987)ADSCrossRefGoogle Scholar
  50. 2.50
    A. Santoro, S. Miraglia, F. Beech, S.A. Sunshine, D.W. Murphy, L.F. Schneemayer, J.Y. Waszcak: Mater. Res. Bull. 22, 1007 (1987)CrossRefGoogle Scholar
  51. 2.51
    P. Bordet, C. Chaillout, J.J. Capponi, J. Chenavas, M. Marezio: Nature 327, 687 (1987)ADSCrossRefGoogle Scholar
  52. 2.52
    F. Boterel, J. Wang, J.M. Haussonne, G. Desgardin, B. Raveau: Industrie chimique SEE Meeting (September 1988)Google Scholar
  53. V. Caignaert, M. Hervieu, J. Wang, G. Desgardin, B. Raveau, F. Bosterel, J.M. Haussonne: Physica C 170, 139 (1990)ADSCrossRefGoogle Scholar
  54. 2.53
    C. Michel, B. Raveau: J. Solid State Chem. 43, 73 (1982)ADSCrossRefGoogle Scholar
  55. 2.54
    B. Chevalier, C. Michel, V. Caignaert, M. Hervieu, G. Demazeau, J. Etourneau, B. Raveau: Private communicationGoogle Scholar
  56. 2.55
    N. Nguyen, J. Choisnet, B. Raveau: Mat Res. Bull. 17, 567 (1982)CrossRefGoogle Scholar
  57. 2.56
    D.M. de Leeuw, C.A. Mutsaers, G.P. Geelen, C. Langeyers: J. Solid State Chem. 80, 276 (1989)ADSCrossRefGoogle Scholar
  58. 2.57
    N. Nguyen: Dissertation. Caen (1982) pp.126–131Google Scholar
  59. 2.58
    V. Caignaert, R. Retoux, M. Hervieu, C. Michel, B. Raveau: J. Solid State Chem. 91, 41 (1991)ADSCrossRefGoogle Scholar
  60. 2.59
    V. Caignaert, R. Retoux, C. Michel, M. Hervieu, B. Raveau: Physica C 167, 483 (1990)ADSCrossRefGoogle Scholar
  61. 2.60
    R.A. Steadman, D.M. de Leeuw, G.P. Geelen, E. Fikkee: Physica C 162–164, 542 (1989)Google Scholar
  62. 2.61
    J.R. Grasmeder, M.T. Weller: J. Solid State Chem. 85, 88 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Bernard Raveau
    • 1
  • Claude Michel
    • 1
  • Maryvonne Hervieu
    • 1
  • Daniel Groult
    • 1
  1. 1.Lab. de Cristallographie et Sciences des MatériauxCaen CedexFrance

Personalised recommendations