The Use of SQUIDs in the Study of Biomagnetic Fields

  • Gian Luca Romani
Part of the NATO ASI Series book series (volume 59)


The investigation of biomagnetic fields, i.e. fields associated with bioelectrical activity in the human body, has marked impressive progress in the last few years and is proving to be a unique tool to achieve functional imaging of fundamental mechanisms in the heart and in the brain. In particular, the neuromagnetic approach to the study of cerebral functions provided definitive evidence on specific organizations of neural networks located in primary areas, i.e., those devoted to the first analysis of input signals from peripheral sensory systems. Last, but not least, some important pathologies of the heart and of the brain are being investigated by many groups in the world, and the results so far achieved have raised the enthusiasm of exponents from the clinical side. As a unique example we mention the identification of epileptic foci, in cases of partial (focal) epilepsy. The importance of this possibility is well focused if we remember that this disease affects an impressively large percentage of inhabitants in highly industrialized countries.


Focal Epilepsy Current Dipole Detection Coil Homogeneous Conductivity Human Auditory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baule, G.M. and McFee, R.: Detection of the magnetic field of the heart. Am. Heart J. 66, 95–96 (1963).CrossRefGoogle Scholar
  2. 2.
    Cohen, D., Edelsack, E.A., and Zimmerman, J.E.: Magnetocardiograms taken inside a shielded room with a superconducting point contact magnetometer. Appl. Phys. Lett. 16, 278–280 (1970).CrossRefGoogle Scholar
  3. 3.
    Cohen, D.: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175, 664–666 (1972).Google Scholar
  4. 4.
    Brenner, D., Williamson, S.J. and Kaufman, L.: Visually evoked magnetic fields of the human brain. Science, 190, 480–482 (1975).CrossRefGoogle Scholar
  5. 5.
    Romani, G.L., Williamson, S.J. and Kaufman, L.: Tonotopic organization of the human auditory cortex. Science, 212, 1339–1340, (1982).CrossRefGoogle Scholar
  6. 6.
    Barth, D.S., Sutherling, W.H., Engel, J. and Beatty, J.: Neuromagnetic localization of epileptiform spike activity in the human brain. Science, 218, 891–894, (1982).CrossRefGoogle Scholar
  7. 7.
    Chapman, R.M., Romani, G.L., Barbanera, S., Leoni, R., Modena, I., Ricci, G.B. and Campitelli, F.: SQUID instrumentation and the relative covariance method for magnetic 3-D localization of pathological cerebral sources. Lett. Nuovo Cimento, 38, 549–554, (1983).CrossRefGoogle Scholar
  8. 8.
    Barth, D.S., Sutherling, W.H., Engel, J. and Beatty, J.: Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science, 223, 293–296, (1984).CrossRefGoogle Scholar
  9. 9.
    Ricci, G.B., Leoni, R., Romani, G.L., Campitelli, F., Buonomo, S., and Modena, I.: 3-D neuromagnetic localization of sources of interictal activity in cases of focal epilepsy. In: Biomagnetism: Applications and theory (H. Weinberg, G. Stroink and T. Katila eds.), pp. 304–310, New York-Toronto: Pergamon Press 1985.Google Scholar
  10. 10.
    Williamson, S.J. and Kaufman, L.: Biomagnetism. J. Magn. Magn. Mat., 22, 129–201 (1981).CrossRefGoogle Scholar
  11. 11.
    Romani, G.L., Williamson, S.J. and Kaufman, L.: Biomagnetic instrumentation. Rev. Sci. Instrum., 53, 1815–1845, (1982).CrossRefGoogle Scholar
  12. 12.
    Williamson, S.J., Romani, G.L., Kaufman, L. and Modena, I. eds.: Biomagnetism: an interdiscilinary approach. New York-London: Plenum Press 1983.Google Scholar
  13. 13.
    Proceedings of the 6th International Conference on Biomagnetism, Tokyo 1987, in press.Google Scholar
  14. 14.
    Romani, G.L. and Narici, L.: Principles and clinical validity of the biomagnetic method. Med. Progr. through Technol., 11, 123–159 (1986).Google Scholar
  15. 15.
    Vacuumschmelze GMBH, Hanau, FRG.Google Scholar
  16. 16.
    Williamson, S.J. and Kaufman, L.: Analysis of neuromagnetic signals. In: Handbook of Electroencephalography and Clinical Neurophysiology (A. Gevins and A. Remond eds), Revised Series, Vol.1, Amsterdam: Elsevier 1987.Google Scholar
  17. 17.
    Hamalainen, M.S. and Sarvas, J.: Feasibility of the homogeneous head model in the interpretation of neuromagnetic fields. Phys. Med. Biol., 32, 91–97 (1987).CrossRefGoogle Scholar
  18. 18.
    Romani, G.L., Leoni, R and Salustri, C.: Multichannel instrumentation for biomagnetism. In: SQUID 85: Superconducting Quantum Interference Devices and their applications (H.D. Hahlbohm, H. Lubbig eds.), pp. 918–932, Berlin-New York: Walter De Gruyter (1985).Google Scholar
  19. 19.
    Lekkala, J.O. and Malmivuo, J.: Noise reduction using a matching input transformer. J. Phys. E: Sci. Instrum., 14, 939–942 (1981).CrossRefGoogle Scholar
  20. 20.
    Cohen, D.: Magnetic measurements and display of current generators in the brain: part II. Polarization of the alpha rhythm. Digest of the 12th Int. Conf. on Medical and Biological Engineering (Jerusalem) Beilinson Medical Center, Petah Tikva, Israel, 1979.Google Scholar
  21. 21.
    Knuutila, J., PhD thesis, Helsinki University of Technology (1988).Google Scholar
  22. 22.
    Ketchen, M.B., Goubau W.M., Clarke, J. and Donaldson, G.B.: Superconducting thin film gradiometer. J. Appl. Phys., 49, 4111–4116 (1978).CrossRefGoogle Scholar
  23. 23.
    Carelli, P. and Foglietti, V.: A second-derivative gradiometer integrated with a dc superconducting interferometer. J. Appl. Phys., 54, 6065–6067 (1983).CrossRefGoogle Scholar
  24. 24.
    Ketchen, M.B.: Design of improved integrated thin-film planar dc SQUID gradiometers. J. Appl. Phys., 58, 4322–4325 (1985).CrossRefGoogle Scholar
  25. 25.
    Erne’, S.N. and Romani, G.L.: Performances of higher order planar gradiometers for biomagnetic source localization. In: SQUID 85: Superconducting Quantum Interference Devices and their applications (H.D. Hahlbohm, H. Lubbig eds.), pp. 951–961, Berlin-New York: Walter De Gruyter (1985).Google Scholar
  26. 26.
    Carelli, P. and Leonl, R.: Localization of biological sources with arrays of superconducting gradiometers. J. Appl. Phys., 59, 645–650 (1986).CrossRefGoogle Scholar
  27. 27.
    Bain, R.J.P., Jones, A.E. and Donaldson, G.B.: Design of high-order superconducting planar gradiometers with shaped asymmetric near-source response. IEEE Trans. Mag. MAG-23, 1146–1149 (1987).CrossRefGoogle Scholar
  28. 28.
    Romani, G.L.: Biomagnetism: an application of SQUID sensors to medicine and physiology. Physica, 126B, 70–81 (1984).Google Scholar
  29. 29.
    Williamson, S.J., Pelizzone, M., Okada, Y., Kaufman, L., Crum, D.B. and Marsden, J.R.: Magnetoencephalography with an array of SQUID sensors. In: Proc. of the 10th International Cryogenic Engineering Conference, Helsinki (H. Collan, P. Berglund and M. Krusius eds.), pp. 339–348, Westbury House: Butterworth, 1984.Google Scholar
  30. 30.
    Ilmoniemi, R., Hari, R. and Reinikainen, K.: A four-channel SQUID magnetometer for brain research. Electroencephalogr. clin. Neurophysiol., 58, 467–473 (1984).CrossRefGoogle Scholar
  31. 31.
    Nowak, H., personal communication.Google Scholar
  32. 32.
    Romani, G.L. and Leoni, R.: Localization of cerebral sources with neuromagnetic measurements. In: Biomagnetism: Applications and theory (H. Weinberg, G. Stroink and T. Katila eds.), pp. 205–220, New York-Toronto: Pergamon Press 1985.Google Scholar
  33. 33.
    Erne’, S.N., personal communication.Google Scholar
  34. 34.
    Hari, R. and Kaurakanta, E.: Neuromagnetic studies of somatosensory system: principles and examples. Progr. in Neurobiol., 24, 233–256, (1985).CrossRefGoogle Scholar
  35. 35.
    Romani, G.L. and Rossini, P.: Neuromagnetic functional localization: principles, state of the art and perspectives. Brain Topography, 1, (1988), in press.Google Scholar
  36. 36.
    Modena, I., Ricci, G.B., Barbanera, S., Leoni, R., Romani, G.L. and Carelli, P.: Biomagnetic measurements of spontaneous brain activity in epileptic patients. Electroencephalogr. clin. Neurophysiol., 54, 622–628 (1982).CrossRefGoogle Scholar
  37. 37.
    Ricci, G.B.: Clinical magnetoencephalography. Nuovo Cimento, 2D, 517–537 (1983).CrossRefGoogle Scholar
  38. 38.
    Ricci, G.B., Romani, G.L., Pizzella, V., Torrioli, G., Buonomo, S., Peresson, M. and Modena, I.: Study of focal epilepsy by multichannel neuromagnetic measurements. Electroenceph. clin. Neurophysiol., 66, 358–368 (1987).CrossRefGoogle Scholar
  39. 39.
    Rose, D.F., Smith, P.D. and Sato, S.: Magnetoencephalography and epilepsy research. Science, 238, 329–335 (1987).CrossRefGoogle Scholar
  40. 40.
    Penfield, W. and Rasmussen, T. The cerebral cortex of man. New York-London: Hafner Publ. Co., 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Gian Luca Romani
    • 1
    • 2
  1. 1.Istituto di Fisica MedicaUniversita’ “G. D’Annunzio”ChietiItaly
  2. 2.Istituto di Elettronica dello Stato SolidoCNRRomaItaly

Personalised recommendations