Advertisement

Signal Processing

  • T. Van Duzer
Conference paper
Part of the NATO ASI Series book series (volume 59)

Abstract

Signal processing places ever-increasing demands on circuit performance and is, therefore, an application that can take advantage of the extensive capabilities of superconductor circuits. In this chapter we will discuss both analog and digital superconductive devices and the roles they can play in signal processing. Some of the applications areas include high-resolution imaging radars, signal-source identification, spread-spectrum communications, and infrared imaging. These requirements press for the highest possible performance.

Keywords

Delay Line Analog Signal Josephson Junction Shift Register Gray Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cafarella, J.H.: Wideband signal processing for communication and radar. Proc. NTC’83 — IEEE National Telesystems Conf., November 1983. CH1975-2/83/0000-0055.Google Scholar
  2. 2.
    Reible, S.A.: Future of cryogenic devices for signal processing applications. In: Research on Superconductive Signal-Processing Devices. MIT Lincoln Laboratory Report, 30 November 1984.Google Scholar
  3. 3.
    Green, J.B.: Private communication.Google Scholar
  4. 4.
    Ramo, S., Whinnery, J.R., and Van Duzer, T.: Fields and waves in communication electronics. 2nd ed. p. 245, New York: Wiley 1984.Google Scholar
  5. 5.
    Anderson, A.C.: Private communication.Google Scholar
  6. 6.
    Withers, R.S., Anderson, A.C., Green, J.B., and Reible, S.A.: Superconductive delay-line technology and applications. IEEE Trans. Magn. MAG-21. 186–192 (1985).CrossRefGoogle Scholar
  7. 7.
    Anderson, A.C., Marden, J.A., and Withers, R.S.: Thin stripline dielectrics with passivated superconductors. MIT Lincoln Laboratory Report. Solid-State Research 1985: 3.Google Scholar
  8. 8.
    Withers, R.S., Anderson, A.C., Wright, P.V., and Reible, S.A.: Superconductive tapped delay lines for microwave analog signal processing, IEEE Trans. Magn. MAG-19. 480–484(1983).CrossRefGoogle Scholar
  9. 9.
    Withers, R.S. and Reible, S.A.: Superconductive chirp-transform spectrum analyzer. IEEE Electron Device Lett. EDL-6. 261–263 (1985).CrossRefGoogle Scholar
  10. 10.
    Ralston, R.W.: Private communication.Google Scholar
  11. 11.
    Reible, S.A., Anderson, A.C., Wright, P.V., Withers, R.S., and Ralston, R.W.: Superconductive convolver. IEEE Trans. Magn. MAG-19. 475–479 (1983).CrossRefGoogle Scholar
  12. 12.
    Reible, S.A.: Superconductive convolver with junction ring mixers. IEEE Trans. Magn. MAG-21. 193–196 (1985).CrossRefGoogle Scholar
  13. 13.
    Green, J.B., Smith, L.N., Anderson, A.C., Reible, S.R., and Withers, R.S.: Analog signal correlator using superconductive integrated components. IEEE Trans. Magn. MAG-23. 895–898 (1987).CrossRefGoogle Scholar
  14. 14.
    Green, J.B., Anderson, A.C., and Withers, R.S.: Analog superconductive correlator for wideband signal processing. Extended Abstracts, 1987 International Superconductivity Electronics Conference (ISEC’87) pp. 49-52. Tokyo, August 28–29, 1987.Google Scholar
  15. 15.
    For a more extensive review of logic and memory, see: Van Duzer, T.: Superconductive digital ICs, Chapter 16 in VLSI Handbook. J. Di Giacomo, ed. McGraw-Hill, 1989.Google Scholar
  16. 16.
    Gheewala, T.R.: Josephson-logic devices and circuits. IEEE Trans. Electron Devices. ED-27. 1857–1869 (1980).CrossRefGoogle Scholar
  17. 17.
    Sone, J., Yoshida, T., and Abe, H.: Resistor-coupled Josephson logic. Appl. Phys. Lett. 40. 741–744 (1982).CrossRefGoogle Scholar
  18. 18.
    Nakagawa, H., Sogawa, E., Kosaka, S., Takada, S., and Hayakawa, H.: Operating characteristics of Josephson four-junction logic (4JL) gate. Japanese J. App. Phys. 21. L198–L200 (1982).CrossRefGoogle Scholar
  19. 19.
    Kotani, S., Fujimaki, N., Imamura, T., and Hasuo, S.: Ultrahigh-speed logic gate family with Nb/Al-AlOx /Nb Josephson junctions. IEEE Trans. Electron Devices. ED-33. 379–384 (1986).CrossRefGoogle Scholar
  20. 20.
    Kotani, S., Imamura, T., and Hasuo, S.: A 2.5-ps Josephson OR gate. Tech. Digest of IEDM, Washington, D.C., Dec. 6–9, 1987. pp. 865-866.Google Scholar
  21. 21.
    Wada, Y., Hidaka, M., Nagasawa, S., and Ishida, I.: AC and DC powered sub-nanosecond 1K-bit Josephson cache memory design. IEEE J. Solid-State Circuits. SSC-23. 923–932 (1988).CrossRefGoogle Scholar
  22. 22.
    Kotani, S., Fujimaki, N., Imamura, T., and Hasuo, S.: A Josephson 4-bit microprocessor. Extended Abstracts. 1988 Int. Solid-State Circuits Conf. San Francisco, February 18, 1988. pp. 150-151.Google Scholar
  23. 23.
    Hamilton, C.A.: Private communication.Google Scholar
  24. 24.
    Hurrell, J.P., Pridmore-Brown, D.C., and Silver, A.H.: Analog-to-digital conversion with unlatched SQUID’s. IEEE Trans. Electron Devices. ED-27. 1887–1896 (1980).CrossRefGoogle Scholar
  25. 25.
    Hamilton, C.A. and Lloyd, F.L.: 100 GHz binary counter based on DC SQUID’s. IEEE Electron Device Lett. EDL-3. 335–338 (1982).CrossRefGoogle Scholar
  26. 26.
    Zappe, H.H.: Ultrasensitive analog-to-digital converter using Josephson junctions. IBM Tech. Disclosure Bull. 17. 3053–3054 (1975).Google Scholar
  27. 27.
    Hamilton, C.A. and Lloyd, F.L.: A superconducting 6-bit analog-.to-digital converter with operation to 2×109 samples/second. IEEE Electron Device Lett. EDL-1. 92–94 (1980).CrossRefGoogle Scholar
  28. 28.
    Dhong, S.H., Jewett, R.E., and Van Duzer, T.: Josephson analog-to-digital converter using self-gating-AND circuits as comparators. IEEE Trans. Magn. MAG-19. 1282–1285 (1983).CrossRefGoogle Scholar
  29. 29.
    Petersen, D.A., Ko, H., Jewett, R.E., Nakajima, K., Nandakumar, V., Spargo, J.W., and Van Duzer, T.: A high-speed analog-to-digital converter using Josephson self-gating-AND comparators. IEEE Trans. Magn. MAG-21. 200–203 (1985).CrossRefGoogle Scholar
  30. 30.
    Fang, E.S. and Van Duzer, T.: Speed-limiting factors in flash-type Josephson A/D converters. To appear in IEEE Trans. Magn. MAG-25. (1989).Google Scholar
  31. 31.
    Hamilton, C.A., Lloyd, F.L., and Kautz, R.L.: Superconducting A/D converters using latching comparators. IEEE Trans. Magn. MAG-21. 197–199 (1985).CrossRefGoogle Scholar
  32. 32.
    Fang, E., Nandakumar, V., Petersen, D.A., and Van Duzer, T.: High-speed A/D converters and shift registers. Extended Abstracts. 1987 International Superconductivity Electronics Conference (ISEC’87), August 28–29, 1987, Tokyo, pp. 325-328.Google Scholar
  33. 33.
    Ko, H. and Van Duzer, T.: A new high-speed periodic-threshold comparator for use in a Josephson A/D converter. IEEE J. Solid-State Circuits. 23. 1017–1021 (1988).CrossRefGoogle Scholar
  34. 34.
    Ko, H.: A flash Josephson A/D converter constructed with one-junction SQUIDs. To be published in IEEE Trans. Magn. 25. (1989).Google Scholar
  35. 35.
    Petersen, D.A., Ko, H., and Van Duzer, T.: Dynamic behavior of a Josephson latching comparator for use in a high-speed analog-to-digital converter. IEEE Trans. Magn. MAG-23. 891–894 (1987).CrossRefGoogle Scholar
  36. 36.
    Petersen, D.A., Hebert, D., and Van Duzer, T.: A Josephson analog limiter circuit. To appear in IEEE Trans. Magn. MAG-25. (1989).Google Scholar
  37. 37.
    See Proc. 1988 Applied Superconductivity Conference. San Francisco, August 21–25, 1988. To appear in IEEE Trans. Magn. MAG-25. (1989).Google Scholar
  38. 38.
    Fujimaki, N., Kotani, S., Imamura, T., and Hasuo, S.: Josephson 8-bit shift register. IEEE Trans. Solid-State Circuits. SC-22. 886–891 (1987).CrossRefGoogle Scholar
  39. 39.
    Jutzi, W., Crocoll, E., Herwig, R., Kratz, H., Neuhaus, M., Sadorf, H., and Wunsch, J.: Experimental SFQ interferometer shift register prototype with Josephson junctions. IEEE Electron Device Lett. EDL-4., 49–50 (1983).CrossRefGoogle Scholar
  40. 40.
    Nandakumar, V. and Van Duzer, T.: Design of a fast variable-frequency shift register. IEEE Trans. Circuits and Systems. CAS-35. 1172–1174 (1988).CrossRefGoogle Scholar
  41. 41.
    Przybysz, J.X. and Blaugher, R.D.: Josephson data latch for frequency agile shift registers. IEEE Trans. Magn. MAG-23. 777–780 (1987)CrossRefGoogle Scholar
  42. 42.
    Przybysz, J.X. and Blaugher, R.D.: Josephson shift register design and layout. To appear in IEEE Trans. Magn, MAG-25. (1989).Google Scholar
  43. 43.
    Kuo, F., Whitely, S.R., and Fails, S.M.: A fast Josephson SFQ shift register. To appear in IEEE Trans. Magn. MAG-25. (1989).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • T. Van Duzer
    • 1
  1. 1.Department of Electrical Engineering and Computer Sciences and the Electronics Research LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations