Flux Creep and the Crossover to Flux Flow in the Resistivity of High-Tc Superconductors

  • A. P. Malozemoff
  • T. K. Worthington
  • E. Zeldov
  • N. C. Yeh
  • M. W. McElfresh
  • F. Holtzberg
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 89)


A model for the resistive behavior of high temperature superconductors in a field is presented, including both flux flow and the possibility of long jumps or cascades of flux lines in flux creep. These mechanisms help to understand characteristic features of the resistivity, reported earlier in YBaCuO crystals and films, especially the large resistive prefactors in the activated regime. The importance of including the temperature dependence of the activation energy in the data analysis is emphasized. The crossover between flux creep and flux flow may explain the knee in the resistivity-vs.-temperature curves observed in much earlier work and particularly clearly in new work on YBaCuO crystals reported here.


High Temperature Superconductor Critical Current Density Flux Line Flux Flow Attempt Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988)CrossRefADSGoogle Scholar
  2. Y. Yeshurun, A. P. Malozemoff, F. Holtzberg and T. Dinger, Phys. Rev. B 38, 11828 (1988).CrossRefADSGoogle Scholar
  3. 2.
    A. P. Malozemoff, T. K. Worthington, Y. Yeshurun, F. Holtzberg and P. H. Kes, Phys. Rev. B 38, 7203 (1988)CrossRefADSGoogle Scholar
  4. T. K. Worthington, Y. Yeshurun, A. P. Malozemoff, R. Yandrofski, F. Holtzberg and T. Dinger, J. de Physique, Colloque C8, Suppl. 12, 2093 (1989).Google Scholar
  5. 3.
    M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988).CrossRefADSGoogle Scholar
  6. 4.
    V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).CrossRefADSGoogle Scholar
  7. 5.
    T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer and J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).CrossRefADSGoogle Scholar
  8. 6.
    T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer and J. V. Waszczak, Appl. Phys. Lett. 54, 763 (1989).CrossRefADSGoogle Scholar
  9. 7.
    J. Z. Sun, K. Char, M. R. Hahn, T. H. Geballe and A. Kapitulnik, Appl. Phys. Lett. 54, 663 (1989).CrossRefADSGoogle Scholar
  10. 8.
    E. Zeldov, N. M. Amer, G. Koren and A. Gupta, Phys. Rev. B 39, 9712 (1989)CrossRefADSGoogle Scholar
  11. E. Zeldov, N. M. Amer, G. Koren, A. Gupta, R. J. Gambino and M. W. McElfresh, Phys. Rev. Lett., June 26, 1989.Google Scholar
  12. 9.
    J. D. Hettinger, A. G. Swanson, W. J. Skocpol, J. S. Brooks, J. M. Graybeal, P. M. Mankiewich, R. E. Howard, B. L. Straughn and E. G. Burkhardt, to be published.Google Scholar
  13. 10.
    M. Hikita and M. Suzuki, Phys. Rev. B 39, 4756 (1989).CrossRefADSGoogle Scholar
  14. 11.
    D. L. Kaiser, F. Holtzberg, M. F. Chisholm and T. K. Worthington, Journal of Crystal Growth 85, 593 (1987).CrossRefADSGoogle Scholar
  15. 12.
    P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).CrossRefADSGoogle Scholar
  16. 13.
    M. R. Beasley, R. Labusch and W. W. Webb, Phys. Rev. 181, 682 (1969).CrossRefADSGoogle Scholar
  17. 14.
    M. Tinkham, Introduction to Superconductivity ( McGraw-Hill Inc., New York 1975 ).Google Scholar
  18. 15.
    J. Bardeen and M. J. Stephen, Phys. Rev. 140 A1197 (1965).CrossRefADSGoogle Scholar
  19. 16.
    R. B. van Dover, L. F. Schneemeyer, E. M. Gyorgy and J. V. Waszczak, Phys. Rev. B 39, 4800 (1989).CrossRefADSGoogle Scholar
  20. 17.
    R. J. Soulen and S. A. Wolf, Bull. Am. Phys. Soc. 34, 846 (1989).Google Scholar
  21. 18.
    J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett. 16, 734 (1966).CrossRefADSGoogle Scholar
  22. 19.
    D. S. Fisher, Phys. Rev. B 22, 1190 (1980).CrossRefADSGoogle Scholar
  23. 20.
    M. P. A. Fisher, Phys. Rev. Lett. 62 1415 (1989)CrossRefADSGoogle Scholar
  24. R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren, A. Gupta and M. P. A. Fisher, to be published.Google Scholar
  25. 21.
    A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp Phys. 34, 409 (1979).CrossRefADSGoogle Scholar
  26. 22.
    P. H. Kes, J. Aarts, J. van den Berg, C. J. van der Beek and J. A. Mydosh, Superconductor Science and Technology 1, 242 (1989).CrossRefADSGoogle Scholar
  27. 23.
    N. C. Yeh, Phys. Rev. B, to be published.Google Scholar
  28. 24.
    A. P. Malozemoff, T. K. Worthington, R. M. Yandrofski and Y. Yeshurun, International Journal of Modern Physics B 1, 1293 (1988).CrossRefADSGoogle Scholar
  29. 25.
    C. W. Hagen and R. Griessen, in Studies of High Temperature Superconductors, ed. A. V. Narlikar (Nova Science Publishers, New York 1988), to be published.Google Scholar
  30. 26.
    K. Kitazawa, S. Kambe and M. Naito, in Strong Correlation and Superconductivity, ed. H. Fukuyama, S. Maekawa and A. P. Malozemoff, Springer Ser. Solid State Sci. (Springer Verlag, Berlin, Heidelberg, 1989), to be published.Google Scholar
  31. 27.
    U. Welp, W. K. Kwok, G. Crabtree, K. G. Vandervoort and J. Z. Liu, Phys. Rev. Lett. 62, 1908 (1989).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • A. P. Malozemoff
    • 1
  • T. K. Worthington
    • 1
  • E. Zeldov
    • 1
  • N. C. Yeh
    • 1
  • M. W. McElfresh
    • 1
  • F. Holtzberg
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HightsUSA

Personalised recommendations