Skip to main content

U(1) Gauge Field, t′-J Model and Superconductivity

  • Conference paper
Strong Correlation and Superconductivity

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 89))

  • 306 Accesses

Abstract

We argue that the physics of the oxide superconductors may be represented by the t-t′-J model, where J is the exchange, tij is the hopping between opposite sublattices and t′ij is the hopping between the same sublattice. Here the sublattices A and B are introduced as labels only, without assuming long range antiferromagnetic order. The hopping terms t and t′ have very different physical consequences. The t term disorders the local antiferromagnetic ordering as the hole hops. This leads to an enhancement of the hole mass for the coherent motion of the hole. At the same time, the t term may lead to a spiral structure, as described by Shraiman and Siggia. Thus the t term may be responsible for the destruction of long range order upon doping. The t′ term, on the other hand, allows the hole to hop without disordering the spin. Nevertheless, as the hole makes a closed loop on one sublattice, it is subject to a slowly varying spin quantization axis and the hole wavefunction picks up a phase equal to half the solid angle subtended by the spin orientations around the loop. The phase can be represented by an Aharonov-Bohm flux, resulting in a U(1) gauge theory, as first pointed out by Wiegmann. There is a natural attraction between holes on opposite sublattices because they experience opposite Aharonov-Bohm fluxes. We treat the gauge theory in the presence of a finite concentration of holes and describe the resulting superconductivity. The gauge field also enhances coupling to particle-hole excitations, leading to a T4/3 law for the normal state resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson, Science 235, 1196 (1987).

    Article  ADS  Google Scholar 

  2. F.C. Zhang and T.M. Rice, Phys. Rev. B 31, 3759 (1988).

    Article  ADS  Google Scholar 

  3. A.K. McMahan, R.M. Martin, S. Satpathy, Phys. Rev. B 3a, 6650 (1988); M.S. Hybertsen, M. Schluter, and N.E. Christensen, preprint.

    Google Scholar 

  4. C. Kane, P.A. Lee, and N. Read, Phys. Rev. B 32 6880 (1989)

    Article  ADS  Google Scholar 

  5. S. Schmitt-Rink, C.M. Varma and A. F. Ruckenstein, Phys. Rev. Lett. 60 2793 (1988).

    Article  ADS  Google Scholar 

  6. G. Baskaran and P.W. Anderson, Phys. Rev. B 31, 580 (1988)

    Article  ADS  Google Scholar 

  7. G. Baskaran, Physica Scripta, to be published.

    Google Scholar 

  8. A. Nakamura and T. Matsui, Phys. Rev. B 37, 7940 (1988).

    Article  ADS  Google Scholar 

  9. P.B. Wiegmann, Phys. Rev. Lett. 60, 821 (198); Physica C 153–155, 103 (1988).

    Article  ADS  Google Scholar 

  10. X.G. Wen, Phys. Rev. B 32 7223 (1989).

    Article  ADS  Google Scholar 

  11. Note that our constraint differs from Wiegmann’s in that he fixed btb = 1 in which case the J term requires an additional factor fiti fjfj. This multpoint vertex is unimportant when the hole concentration approaches zero, and has been ignored by Wen.

    Google Scholar 

  12. See E. Fradkin and M. Stone, Phys. Rev. B 38, 7215 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  13. F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Chakravarty, D. Nelson, and B.I. Halperin, Phys. Rev. Lett. 60, 1057 (1988).

    Article  ADS  Google Scholar 

  15. D. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).

    Article  ADS  Google Scholar 

  16. A.M. Polyakov, Gauge Fields and Strings, Harwood 1987.

    Google Scholar 

  17. N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

    Article  ADS  Google Scholar 

  18. A spinless collective mode has been suggested by D. Rokhsar and S. Kivelson, Phys. Rev. Lett 61, 2376 (1988).

    Article  ADS  Google Scholar 

  19. M. Reizer, Phys. Rev. B 39, 1602 (1989).

    Article  ADS  Google Scholar 

  20. If there are multiple band minima, the symmetry of the order parameter between different bands has to be considered, but the full gap survives.

    Google Scholar 

  21. B. Shraiman and E. Siggia, Phys. Rev. Lett. 62, 1564 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Lee, P.A. (1989). U(1) Gauge Field, t′-J Model and Superconductivity. In: Fukuyama, H., Maekawa, S., Malozemoff, A.P. (eds) Strong Correlation and Superconductivity. Springer Series in Solid-State Sciences, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83836-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83836-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83838-5

  • Online ISBN: 978-3-642-83836-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics