Advertisement

Infrared Studies of Oxide Superconductors in the Normal and Superconducting States

  • R. T. Collins
  • Z. Schlesinger
  • F. Holtzberg
  • C. Feild
  • G. Koren
  • A. Gupta
  • D. G. Hinks
  • A. W. Mitchell
  • Y. Zheng
  • B. Dabrowski
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 89)

Abstract

We present a summary of the infrared properties of the cubic oxide superconductor Ba1−xKxBiO3 and the layered oxide superconductor Y1Ba2Cu3O7 in the normal and superconducting states. The normal state conductivity of Ba0.6K0.4BiO3 exhibits a broad peak near 5000cm−1 which is similar to a peak previously observed in BaPb1−xBixO3. The presence of this feature in both systems may provide an important clue to the mechanism of superconductivity in the BiO3 superconductors. The normal state conductivity of Y1Ba2Cu3O7 is characterized by a sharp temperature dependent peak near the origin and a broad mid-infrared background. This background has been interpreted both as evidence for low lying charge excitations and in terms of strong coupling between carriers and excitations of magnetic origin. In the superconducting state of Ba0.6K0.4BiO3 we obtain an energy gap of conventional magnitude. In contrast we find an extremely unconventional energy scale of 7–8kTc for the a−b plane of Y1Ba2Cu3O7 and also find evidence for substantial gap anisotropy between the a−b plane and c-axis.

Keywords

Superconducting State Oxide Superconductor Unity Reflectivity Reflectivity Ratio Incident Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Bednorz and K.A. Müller, Z. Phys. B 64 189 (1986)CrossRefGoogle Scholar
  2. J.G. Bednorz, M. Takashige and K.A. Müller, Europhys. Lett. 3, 379 (1987).CrossRefADSGoogle Scholar
  3. 2.
    R. J. Cava, B. Batlogg, J.I. Krajewski, R. C. Farrow, L. W. Rupp, A. E. White, K. T. Short, W. F. Peck, T. Y. Kometani, Nature 332, 814 (1988)CrossRefADSGoogle Scholar
  4. D. G. Hinks, D. R. Richards, B. Dabrowski, D. T. Marx and A. W. Mitchell, Nature 335, 419 (1988).CrossRefADSGoogle Scholar
  5. 3.
    Z. Schlesinger, R. T. Collins, J. A. Calise, D. J. Hinks, A. W. Mitchell, Y. Zheng, B. Dabrowski, N. E. Bickers, and D. J. Scalapino, submitted Phys. Rev. B.Google Scholar
  6. 4.
    S. Tajima, S. Ushida, A. Masaki, H. Tagaki, K. Kitazawa, S. Tanaka, and S. Katsui, Phys. Rev. B32, 6302 (1985)ADSGoogle Scholar
  7. S. Tajima, S. Ushida, A. Masaki, H. Tagaki, K. Kitazawa, S. Tanaka, and S. Sugai, Phys. Rev B35, 696(1987).ADSGoogle Scholar
  8. 5.
    R. T. Collins, Z. Schlesinger, R. H. Koch, R. B. Laibowitz, T. S. Plaskett, P. Freitas, W. J. Gallagher, R. L. Sandstrom and T. R. Dinger, Phys. Rev. Lett. 59, 704 (1987).CrossRefADSGoogle Scholar
  9. 6.
    Z. Schlesinger, R. T. Collins, D. L. Kaiser, and F. Holtzberg, Phys. Rev. Lett. 59, 1958 (1987)CrossRefADSGoogle Scholar
  10. Z. Schlesinger, R. T. Collins, D. L. Kaiser, F. Holtzberg, G. V. Chandrashekhar, M. W. Shafer, and T. M. Plaskett, Physica C 153, 1734 (1988).CrossRefADSGoogle Scholar
  11. 7.
    M. P. Petrov, A. I. Grachev, M. V. Krasin’kova, A. A. Nechitailov, V. V. Prokofiev, V. V. Poborchy, S. I. Shagin, and N. F. Kartenko, Solid State Commun. 67, 1197 (1988).CrossRefADSGoogle Scholar
  12. 8.
    M. Reedyk, D. A. Bonn, J. D. Garrett, J. E. Greedan, C. V. Stager, T. Timusk, K. Kamaras, and D. B. Tanner, Phys. Rev. B38, 11981 (1988).CrossRefGoogle Scholar
  13. 9.
    T. Timusk, S. L. Herr, K. Kamaras, C. D. Porter, D. B. Tanner, D. A. Bonn, J. D. Garrett, C. V. Stager, J. E. Greedan, and M. Reedyk, Phys. Rev. B38, 6683 (1988).CrossRefADSGoogle Scholar
  14. 10.
    R. T. Collins, Z. Schlesinger, F. Holtzberg, P. Chaudari, and C. Field, Phys. Rev. B39, 6571 (1989).CrossRefADSGoogle Scholar
  15. 11.
    G. A. Thomas, J. Orenstein, D. H. Rapkine, M. Capizzi, A. J. Millis, R. N. Bhatt, L. F. Schneemeyer and J. V. Waszczak, Phys. Rev. Lett. 61, 1313 (1988).CrossRefADSGoogle Scholar
  16. 12.
    R. T. Collins, Z. Schlesinger, F. Holtzberg, and C. Feeld, submitted Phys. Rev.Google Scholar
  17. 13.
    Yasuhiro lye, Journal of Modern Physics B.Google Scholar
  18. 14.
    Z. Schlesinger, R. T. Collins, B. A. Scott, and J. A. Calise, Phys. Rev. B38, (1988).Google Scholar
  19. 15.
    B. Battlogg, Physica B 126, 275 (1984).CrossRefGoogle Scholar
  20. 16.
    G. A. Thomas, J. Orenstein, S. L. Cooper, D. H. Rapkine, M. Capazzi, T. Timusk, A. J. Millis, L. F. Schneemeyer and J. V. Waszczak, Preprint.Google Scholar
  21. 17.
    H. Seidel, F. Hentsch, M. Mehring, J. G. Bednorz, and K. A. Müller, Europhys. Lett. 5, 647 (1988).CrossRefADSGoogle Scholar
  22. 18.
    S. L. Cooper, F. Slakey, M. V. Klein, J. P. Rice, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B38, 119–34 (1988).Google Scholar
  23. 19.
    J.-M. Imer, F. Patthey, B. Dardel, W. -D. Schneider, Y. Baer, Y. Petroff, and A. Zettl, Phys. Rev. Lett. 62, 336 (1989).CrossRefADSGoogle Scholar
  24. 20.
    M. Lee, A. Kapitulnik, and M. R. Beasley, Proceedings of the NEC symposium on Mechanisms of High Temperature Superconductivity, Oct. 24–27, 1988, Tokyo, Japan.Google Scholar
  25. 21.
    L. Krusin-Elbaum, R. L. Greene, F. Holtzberg, A. P. Malozemoff, and Y. Yeshrun, Phys. Rev. Lett. 62, 217 (1989).CrossRefADSGoogle Scholar
  26. 22.
    Z. Schlesinger, R. T. Collins, M. W. Shafer and E. M. Engler, Phys. Rev. B36, 5275 (1987).CrossRefADSGoogle Scholar
  27. 23.
    J. Schützmann, W. Ose, J. Keller, K. F. Renk, B. Roas, L. Schultz, G. Saemann-Ischenko, accepted for publication in Europhys. Lett.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • R. T. Collins
    • 1
  • Z. Schlesinger
    • 1
  • F. Holtzberg
    • 1
  • C. Feild
    • 1
  • G. Koren
    • 1
  • A. Gupta
    • 1
  • D. G. Hinks
    • 2
  • A. W. Mitchell
    • 2
  • Y. Zheng
    • 2
  • B. Dabrowski
    • 2
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations