Advertisement

Resistive State and Hall Effect in High-Tc Superconductors

Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 89)

Abstract

Magnetotransport studies were carried out on thin film samples of Er Ba 2 Cu 3 O 7−y and Bi 2 Sr 2 CaCu 2 O 8 +y in the superconducting transition region. The fluctuation contribution to the Hall conductivity, Δσ xy , is negative in sign and shows a stronger singularity than Δσ xx , as T c is approached from above. The magnetic-field-induced broadening of the resistive transition is found to be completely independent of the relative orientation between current and magnetic field, posing a serious question to the conventional picture of Lorentz-force-driven flux creep. The Hall effect in the resistive state exhibits a complicated temperature and field dependence, including threshold behavior and sign reversal.

Keywords

Hall Effect Magnetic Field Dependence Flux Line Resistive Transition Hall Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    see, for example, Y.Iye, in `Studies of High Temperature Superconductors’, ed. A.V.Narlikar, (Nova Science, New York, 1989) vol.l, p.166.Google Scholar
  2. [2]
    Y.Iye, S.Nakamura and T.Tamegai, Physica C, to be published.Google Scholar
  3. [3]
    Y.Iye, S.Nakamura and T.Tamegai, Physica C, to be published.Google Scholar
  4. [4]
    Y. Iye, Cryogenics, 28 (1988) 164.CrossRefGoogle Scholar
  5. [5]
    Y.Iye, T.Tamegai, T.Sakakibara, T.Goto, N.Miura, H.Takeya and H.Takei, Physica C153–155, (1988) 26.Google Scholar
  6. [6]
    T.T.M. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 60 (1988) 1662.CrossRefADSGoogle Scholar
  7. [7]
    Y. Iye, in `Mechanisms of High Temperature Superconductivity’, eds. H.Kamimura and A.Oshiyama, ( Springer, Heidelberg, 1989 ) p. 263.CrossRefGoogle Scholar
  8. [8]
    K. Kitazawa, S. Kambe, M. Naito, I. Tanaka and H. Kojima, Jpn. J. Appl. Phys. 28 (1989) L555.CrossRefADSGoogle Scholar
  9. [9]
    M. Tinkham, Phys. Rev. Lett. 60 (1988) 1658.CrossRefADSGoogle Scholar
  10. [10]
    R. Ikeda, T. Ohmi and T. Tsuneto, J. Phys. Soc. Jpn. 58 (1989) 1377.CrossRefADSGoogle Scholar
  11. [11]
    D.R. Nelson, Phys. Rev. Lett. 60 (1988) 1973.CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    M.P.A. Fischer, Phys. Rev. Lett. 62 (1989) 1415.CrossRefADSGoogle Scholar
  13. [13]
    H. Fukuyama, H. Ebisawa and T.Tsuzuki, Prog. Theor. Phys. 46 (1971) 1028.CrossRefADSGoogle Scholar
  14. [14]
    J. Bardeen and M.J. Stephen, Phys. Rev. 140 (1965) A1197.CrossRefADSGoogle Scholar
  15. [15]
    K. Maki, Prog. Theor. Phys. 41 (1969) 902.CrossRefADSGoogle Scholar
  16. [16]
    H. Ebisawa, J. Low Temp. Phys. 41 (1972) 11.CrossRefADSGoogle Scholar
  17. [17]
    for example, N.Usui, T.Ogasawara, K.Yasukochi and S.Tomoda, J. Phys. Soc. Jpn. 27 (1969) 574.Google Scholar
  18. [18]
    A.P. Malozemoff, T.K. Worthington, N.C. Yeh, E. Zeldov, M,W. McElfresh and F.Holtzberg, in this Proceedings.Google Scholar
  19. [19]
    E. Zeldov, N.M. Amer, G. Koren, A. Gupta, R.J. Gambino and M.W. McElsresh, Phys. Rev. B, to be published.Google Scholar
  20. [20]
    R.B. Laughlin, in.this Proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • Y. Iye
    • 1
  1. 1.The Institute for Solid State PhysicsThe University of TokyoRoppongi, Minato-ku, Tokyo 106Japan

Personalised recommendations