Experimental Constraints and Theory of Layered High-Tc Superconductors

  • T. Schneider
  • M. Frick
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 89)

Abstract

Recent experiments have revealed several key features of the normal and superconducting states of high-temperature superconductors. They impose strong constraints on theoretical models of the phenomenon. We developed a tight-binding BCS-type model. The carriers form a narrow and anisotropic band, and are subject to on-site and inter-layer singlet pairing. The resulting properties agree remarkably well with experimental results, resolve conflicting interpretations of experimental results, offer an easily understandable physical picture, and point to the nature of the pairing mechanism.

Keywords

Anisotropy Coherence Aniso Antipar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. J. Uemura et al., Phys. Rev. B 38, 909 (1988).ADSGoogle Scholar
  2. 2.
    L. Krusin-Elbaum et al., Phys. Rev. Lett. 62, 217 (1989).CrossRefADSGoogle Scholar
  3. 3.
    T. T. M. Palstra et al., Phys. Rev. B 39, 5102 (1988).ADSGoogle Scholar
  4. 4.
    J. H. Kang et al., Appl. Phys. Lett. 53, 2560 (1988).CrossRefADSGoogle Scholar
  5. 5.
    S. Martin et al, Phys. Rev. Lett. 60, 3194 (1988).Google Scholar
  6. 6.
    A. Zettl et al., in Mechanisms of High Temperature Superconductivity, edited by H. Kamimura and A. Oshiyama ( Springer-Verlag, Berlin Heidelberg, 1988 ), p. 249.Google Scholar
  7. 7.
    H. Takagi et al., Nature 332, 236 (1988).CrossRefADSGoogle Scholar
  8. 8.
    U. Hofman et al., preprint.Google Scholar
  9. 9.
    R. T. Collins et al., preprint.Google Scholar
  10. 10.
    G. A. Thomas et al., Phys. Rev. Lett. 61, 1313 (1988).CrossRefADSGoogle Scholar
  11. 11.
    A. T. Fiory et al., Phys. Rev. Lett. 61, 1419 (1988).CrossRefADSGoogle Scholar
  12. 12.
    M. Lee et al., in Ref. 6, p. 220.Google Scholar
  13. 13.
    J. S. Tsai et al., in Ref. 6, p. 229.Google Scholar
  14. 14.
    J. S. Tsai et al., Physica C 153–155, 1385 (1988).CrossRefADSGoogle Scholar
  15. 15.
    Y. lye, in Ref. 6, p. 263.Google Scholar
  16. 16.
    T. Takahashi et al., Nature 334, 691 (1988).CrossRefADSGoogle Scholar
  17. 17.
    J. M. Imer et al., Phys. Rev. Lett. 62, 336 (1989).CrossRefADSGoogle Scholar
  18. 18.
    F. J. Himpsel et al., Phys. Rev. B 38, 11946 (1988).ADSGoogle Scholar
  19. 19.
    L. Hoffmann et al, Physica C 153–155, 129 (1988).CrossRefADSGoogle Scholar
  20. 20.
    L. C. Smedskkjaer et al, Physica C 156, 269 (1988).CrossRefADSGoogle Scholar
  21. 21.
    A. Bansil et al, Phys. Rev. Lett. 61, 2480 (1988).CrossRefADSGoogle Scholar
  22. 22.
    J. Ju et al, Physica C 152, 273 (1988).ADSGoogle Scholar
  23. 23.
    T. Schneider, H. de Raedt, and M. Frick, Z. Phys. B (to be published).Google Scholar
  24. 24.
    P. B. Allen and W. E. Pickett, Phys. Rev. B 36, 3926 (1987).CrossRefADSGoogle Scholar
  25. 25.
    L. C. Hebel and C. P. Schlichter, Phys. Rev. 113, 1504 (1959).CrossRefADSGoogle Scholar
  26. 26.
    M. Fibich, Phys. Rev. Lett. 14, 561 (1965).CrossRefADSGoogle Scholar
  27. 27.
    Y. Kitaoka et al, in Ref. 6, p. 148.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • T. Schneider
    • 1
  • M. Frick
    • 1
  1. 1.IBM Research DivisionZürich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations