On the Application of Projection Techniques to the Electron Correlation Problem

  • K. W. Becker
  • P. Fulde
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 89)


Expressions for the ground-state energy and for correlation functions at zero temperature are presented which are suitable for the application of projection techniques. They can be used for weak as well as strong correlations and allow for a unified approch to the electronic correlation problem. Three examples are presented. Two of them concern the ground-state energy of a two-band Hubbard Hamiltonian and of a two-dimensional Heisenberg antiferromagnet, respectively. As a third example the motions of a hole in a one-dimensional quantum antiferromagnet is treated.


Spectral Function Projection Technique Couple Electron Pair Approximation Moller Operator Couple Electron Pair Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    see e.g. “Methods of Electronic Structure Theory” edited by H.F. Schaefer III, Plenum Press, New York, 1977Google Scholar
  2. [2]
    M.V. Gandulia Pirovano, G. Stollhoff, P. Fulde and K. Bohnen, Phys. Rev. B 39, 5156 (1989)CrossRefADSGoogle Scholar
  3. [3]
    R.P. Feynmann “Statistical Mechanics” W. A. Benjamin, Inc. (Reading, Mass.) 1972Google Scholar
  4. [4]
    J. Hubbard, Proc. Royal Soc. A276, 238 (1963)CrossRefADSGoogle Scholar
  5. [5]
    S. E. Barnes, J. Phys. F 6, 1375 (1976), ibid. F 7, 2637 (1977)Google Scholar
  6. [6]
    P. Coleman, Phys. Rev. B 29, 3035 (1984)CrossRefADSGoogle Scholar
  7. [7]
    K.W. Becker and P. Fulde, Z. Phys. B 72, 423 (1988)CrossRefADSGoogle Scholar
  8. [8]
    K.W. Becker, H. Won and P. Fulde, Z. Phys. B (in print)Google Scholar
  9. [9]
    R. Kubo, J. Phys. Soc. Japan 17. 1100 (1962)CrossRefzbMATHGoogle Scholar
  10. [10]
    K.W. Becker and P. Fulde, submitted for publicationGoogle Scholar
  11. [11]
    J. Goldstone, Proc. Roy. Soc. (London) A 239, 267 (1957)CrossRefzbMATHADSMathSciNetGoogle Scholar
  12. [12]
    K.W. Becker and W. Brenig (to be published)Google Scholar
  13. [13]
    E. Fick and G. Sauermann “Quantenstatistik dynamischer Prozesse” H. Deutsch Verlag, Frankfurt/M., 1986Google Scholar
  14. [14]
    D. Forster “Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions” Benjamin Publ. (Reading, Mass.) 1975Google Scholar
  15. [15]
    M. Parinello and T. Arai, Phys. Rev. 10, 265 (1974)ADSGoogle Scholar
  16. [16]
    J. D. Reger and A.P. Young, Phys. Rev. B 37, 5978 (1988)CrossRefADSGoogle Scholar
  17. [17]
    S. Liang, B. Doucot and P.W. Anderson, Phys. Rev. Lett. 61, 365 (1988)CrossRefADSGoogle Scholar
  18. [18]
    T. Kaplan, P. Horsch and W. von der Linden (submitted for publication)Google Scholar
  19. [19]
    W. Brenig and K.W. Becker, Z. Phys. B (in print)Google Scholar
  20. [20]
    W. F. Brinkmann and T. M. Rice, Phys. Rev. B 2, 1324 (1970)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • K. W. Becker
    • 1
  • P. Fulde
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany

Personalised recommendations