Characteristics of the Charged Hole in the One-Dimensional Mott Insulator

  • N. Kawakami
  • A. Okiji
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 89)


Charge excitations in the one-dimensional Hubbard model are investigated, with the use of the Bethe-Ansatz method, by inserting the charged hole into the Mott insulator. The density of states and the momentum-dependent susceptibility for the charged hole are shown to have a large enhancement due to the formation of the Hubbard gap. The logarithmic anomaly near 4k F for the latter quantity is investigated in the vicinity of the Mott insulator. The compressibility and the specific heat calculated in the whole temperature region are discussed in connection with the characteristics of the charged holes.


Mott Insulator Lower Energy Region Charged Hole Divergent Behaviour Spinless Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. G. Bednorz and K. A. Muller: Z. Phys. B64 (1986) 189.CrossRefGoogle Scholar
  2. [2]
    C. W. Chu, P. H. Hor, P. L. Meng, L.Gao, Z. J. Huang and Q. Wang: Phys. Rev. Lett. 58 (1987) 405.CrossRefADSGoogle Scholar
  3. [3]
    P. W. Anderson: Science 235 (1987) 1196CrossRefADSGoogle Scholar
  4. [4]
    L. H. Lieb and F. Y. Wu: Phys. Rev. Lett. 20 (1968) 1445.CrossRefADSGoogle Scholar
  5. [5]
    M. Takahashi: Prog. Theor. Phys. 42 (1969) 1098.CrossRefADSGoogle Scholar
  6. [6]
    A. A. Ovchinnikov: Soviet Physics JETP 30 (1970) 1160.ADSGoogle Scholar
  7. [7]
    I. A. Musurkin and A. A. Ovchinnikov: Soviet Physics Solid State 12 (1971) 2031.Google Scholar
  8. [8]
    M. Takahashi: Prog Theor. Phys. 47 (1972) 69.CrossRefADSGoogle Scholar
  9. [9]
    H. Shiba: Phys. Rev. B6 (1972) 930.CrossRefADSGoogle Scholar
  10. [10]
    C. F. Coll III: Phys. Rev. B9 (1974) 2150.Google Scholar
  11. [11]
    T. Usuki, N. Kawakami and A. Okiji: Phys. Lett. 135A (1989) 476.CrossRefGoogle Scholar
  12. [12]
    N. Kawakami, T. Usuki and A. Okiji: Phys. Lett.(1989) in press.Google Scholar
  13. [13]
    N. Kawakami and A. Okiji: submitted to Phys. Rev. B (1989).Google Scholar
  14. [14]
    C. N. Yang: Phys. Rev. Lett. 19 (1967) 1312.CrossRefzbMATHGoogle Scholar
  15. [15]
    This specification of excitations is similar to the one discussed in the RVB theory, see [3] and also S. Kivelson, D. Rokhsar and J. Sethna, Phys. Rev. B35 (1987) 8865.Google Scholar
  16. [16]
    J. E. Hirsch and D. J. Scalapino: Phys. Rev. B27 (1983) 7169.CrossRefADSGoogle Scholar
  17. [17]
    See for the thermodynamics of the Anderson model, A. Okiji and N. Kawakami, J. Appl. Phys. 55 (1984) 1931.CrossRefADSGoogle Scholar
  18. [18]
    V. Emery, Phys. Rev. Lett. 37 (1976) 107.CrossRefADSGoogle Scholar
  19. [19]
    J. B. Torrance, Phys. Rev. B17 (1978) 3099.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • N. Kawakami
    • 1
  • A. Okiji
    • 2
  1. 1.Research Institute for Fundamental PhysicsKyoto UniversityKyoto 606Japan
  2. 2.Department of Applied PhysicsOsaka UniversitySuita, Osaka 565Japan

Personalised recommendations