Unsteady Pulsing of Cylinder Wakes

  • D. R. Williams
  • C. W. Amato
Part of the Lecture Notes in Engineering book series (LNENG, volume 46)


An overview of recent progress in modelling the behavior of low Reynolds number cylinder wakes is presented. The discussion examines ways in which unsteady forcing has been used to test hypotheses and to control the behavior of the wake. hi addition to the review a new method of reducing the wake momentum defect using pulsating jets is demonstrated for flow around a circular cylinder at a Reynolds number of 370. The line of pulsating jets is embedded in the trailing generator of the cylinder. There is no net mass added by the pulsating jets on an average over the cycle, but there is net momentum addition to the flow by the second-order streaming effect. The jets are most effective in modifying the wake when pulsating at twice the Karman shedding frequency. The streaming flow generated by the pulsation suppresses the Karman vortex street and reduces the momentum defect.


Bluff Body Vortex Street Centerline Velocity Splitter Plate Absolute Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bearman, P. W. 1967 The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. Aero. Quart. 18, pp. 207–224.Google Scholar
  2. Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Ann. Rev. Fluid Mech. 16 pp. 195–222.CrossRefADSGoogle Scholar
  3. Bechert, D. W. 1985 Excitation of instability waves. IUTAM Symp. Aero and Hydro-Acoustics Lyon. 362Google Scholar
  4. Bers, A. 1975 Linear waves and instabilities. in Physique des Plasmas (eds C. DeWitt and J. Peyraud ) pp. 117–213.Google Scholar
  5. Braza, M. Chassaing, P. & Ha Minh, H. 1986 Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165 pp. 79–130.CrossRefMATHADSMathSciNetGoogle Scholar
  6. Briggs, R. J. 1964 Electron Stream Interaction with Plasmas. Research Monograph No. 29, Cambridge, Mass. MIT Press.Google Scholar
  7. Chehroudi, B. and Simpson, R. L. 1984 A rapidly scanning laser Doppler anemometer. J. Phys. E. 17, p. 131.CrossRefADSGoogle Scholar
  8. Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1987 Local and global bifurcations in spatially developing flows. Phys. Rev. Lett. 60 pp. 25–31.CrossRefADSGoogle Scholar
  9. Cimbala, J. M. and Park, W. J. 1987 Mean velocity profiles and flow visualizations of a two-dimensional momentumless wake. Bulletin Am. Phys. Soc., November. p 2044.Google Scholar
  10. Drazin, P. & Reid, W. 1981 Hydrodynamic Stability Cambridge University Press.Google Scholar
  11. Economou, M. 1986 Design and Performance of a Scanning Laser Doppler Velocimeter. M.S. Thesis, Illinois Institute of Technology.Google Scholar
  12. Fornberg, B. 1980 A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98 (4), pp. 819–855.CrossRefMATHADSGoogle Scholar
  13. Gaster, M. 1981 On Transition to Turbulence in Boundary Layers in Transition and Turbulence, (ed. by R.E. Meyer) Academic Press.Google Scholar
  14. Gerrard, J. H. 1978 The wakes of cylindrical bodies at low Reynolds number. Phil. Trans. Roy. Soc. London 288A pp. 351–382.CrossRefADSGoogle Scholar
  15. Goldstein, S. 1965 Modern Developments in Fluid Dynamics Fluid Motion Panel of the A.R.C. (S. Goldstein, ed.) Vol II. Dover Publications, p. 425.Google Scholar
  16. Griffin, O. M. 1984 Vibrations and flow-induced forces caused by vortex shedding. In Symposium on flow induced vibrations ASME Winter Annual Meeting, New Orleans.Google Scholar
  17. Hama, F. R. 1957 Three-dimensional vortex pattern behind a circular cylinder. J. Aero. Sci., 24, pp. 156–157.Google Scholar
  18. Iluerre, P. 1987 Spatio-temporal instabilities in closed and open flows. Instabilities and Nonequilibrium Structures. E. Tirapequi and D. Villarroel, eds., Reidel Publ. Co., pp. 141–177.Google Scholar
  19. Iuerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159 pp. 151–168.CrossRefADSMathSciNetGoogle Scholar
  20. Jordan, S. K. & Fromm, J. E. 1972 Oscillatory drag, lift and torque on a circular cylinder in a uniform flow. Phys. Fluids 15 pp. 371–376.CrossRefMATHADSGoogle Scholar
  21. Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound and Vibration. 99 (1), pp. 53–83.CrossRefADSGoogle Scholar
  22. Koopman, G. H. 1967 The vortex wakes of vibrating cylinders at low Reynolds numbers. J. Fluid Mech. 28 pp. 501–512.CrossRefADSGoogle Scholar
  23. Kovasznay, L. S. G. 1949 Hot-wire investigation of the wake behind cylinders at low Reynolds numbers. Proc. Roy. Soc. A 198 pp. 174–190CrossRefADSGoogle Scholar
  24. Lamb, H. 1945 Hydrodynamics. Sixth edition, Dover Publications. pp. 174–190.Google Scholar
  25. Mathis, C., Provansal, M. & Boyer, L. 1984 The Benard–Von Karman instability: an experimental study near the threshold. J. Physique Len. 45 pp. 483–491.CrossRefGoogle Scholar
  26. Monkewitz, P. A. & Nguyen, L. N. 1987 Absolute instability in the near wake of two-dimensional bluff bodies. J. Fluids and Struct. 1 pp. 165–184.CrossRefMATHADSGoogle Scholar
  27. Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 25 pp. 1137–1143.CrossRefADSGoogle Scholar
  28. Morkovin, M. 1964 Flow around circular cylinders - a kaleidoscope of challenging fluid phenomenon. ASME Symposium on Fully Separated Flows, pp. 102–118.Google Scholar
  29. Morkovin, M. 1987 On Symmetry Properties of Free and Forced Vortex Streets. Bulletin of Am. Phys. Soc. 32 (10) Nov. p2059.Google Scholar
  30. Morkovin, M. 1988 Recent insights into instability and transition to turbulence in open-flow systems. AIAA paper 88–3675. Presented at 1st Nat. Fluid Dyn. Cong., Cincinnati.Google Scholar
  31. Nishioka, M. & Sato, H. 1978 Mechanism of determination of shedding frequency of vortices behind a cylinder at low Reynolds numbers. J. Fluid Mech. 89 pp. 59–82.CrossRefADSGoogle Scholar
  32. Olinger, D. J. & Sreenivasan, K. R. 1988 Nonlinear dynamics of the wake of an oscillating cylinder. Phys. Rev. Lett. 60 pp. 797–800.CrossRefADSGoogle Scholar
  33. Overvik, T. 1982 Hydroelastic Motion of Multiple Risers in a Steady Current. Ph.D. Thesis, Norwegian Institute of Technology.Google Scholar
  34. Prandtl, L. 1914 Der Luftwiderstand von Kugeln. Nachr. Ges. Wiss. Goettingen, Math. Phys. Klasse. pp. 177–190.Google Scholar
  35. Rayleigh, L. 1945 Theory of Sound. Dover Publications, p. 333.Google Scholar
  36. Roshko, A. 1954 On the development of turbulent wakes from vortex streets. NACA Rep. 1191.Google Scholar
  37. Schlichting, H. 1979 Boundary-Layer Theory. Fourth edition, McGraw-Hill Publish. Co., p. 41.MATHGoogle Scholar
  38. Son, J. S. & Hanratty, T. J. 1969 Numerical solution for the flow around a cylinder of Reynolds numbers 40, 200 and 500. J. Fluid Mech. 35, p 651.Google Scholar
  39. Stuber, K. & Gharib, M. 1988 Experiments on the forced wake of an airfoil - Transition from order to chaos. Proc. 1st Nat. Fluid Dynamics Cong., 2 Cincinnati, pp. 723 730.Google Scholar
  40. Thorn, A. 1933 The flow past circular cylinders at low speeds. Proc. Roy. Soc. A 141,p 651.CrossRefADSGoogle Scholar
  41. Stuber, K. & Gharib, M. 1988 Experiments on the forced wake of an airfoil - Transition from order to chaos. Proc. 1st Nat. Fluid Dynamics Cong., 2 Cincinnati, pp. 723–730.Google Scholar
  42. Triantafyllou, G. S., Triantafyllou, M. S. & Chryssostomidis, C. 1986 On the formation of vortex streets behind stationary cy linders. J. Fluid Mech. 170 pp. 461–477.CrossRefADSGoogle Scholar
  43. Unal, M. F. and Rockwell, D. 1988 On vortex formation from a cylinder. Part 1. The initial instability. J. Fluid Mech. 190 pp. 491–512.CrossRefADSGoogle Scholar
  44. von Karman, T. 1911 Ueber den Mechanismus des Widerstandes, den ein bewegter Koerper in einer Fluessigkeit erfaehrt. Goettinger Nach. Math. Phys. Kl. pp. 509–517.Google Scholar
  45. Williams, D. R. and Economou, M. 1987 Scanning laser anemometer measurements of a forced cylinder wake. Phys. Fluids 30, pp. 2283–2285.CrossRefADSGoogle Scholar
  46. Wood, C. J. 1964 The effect of base bleed on a periodic wake. J. Roy. Aero. Soc. 68 p. 477.Google Scholar
  47. Wood, C. J. 1967 Visualization of an incompressible wake with base bleed. J. Fluid Mech. 29, pp. 259–272.CrossRefADSGoogle Scholar
  48. Zdravkovich, M. M. 1981 Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding, J. Indus. Aero. and Wind Engrg. 7, pp. 145–189.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • D. R. Williams
    • 1
  • C. W. Amato
    • 1
  1. 1.Fluid Dynamics Research CenterIllinois Institute of TechnologyChicagoUSA

Personalised recommendations