Heat Transfer by Thermals in the Convective Boundary Layer

  • U. Schumann
  • H. Schmidt
Conference paper


The convective boundary layer (CBL) develops in the atmosphere if turbulence generated by buoyancy due to upward heat flux from the surface dominates relative to turbulence generated by mean shear. The CBL extends from the surface up to an inversion layer at height z i . Above the inversion, the fluid is stably stratified. Turbulence in the mixed layer below the inversion scales with the convective velocity w * = (g β z i Q s )1/3 and the convective temperature T *. = Q s /w *, where g, β, and Q s are the gravitational acceleration, the volumetric expansion coefficient and the temperature flux at the surface, respectively. Typical values in the atmosphere are z i = 1000m, w *. = 1m/s, T * = 0.1K and the related Rayleigh number is of the order 1018, while previous laboratory experiments are limited to Rayleigh numbers less than about 109, e.g. see [1]. The surface layer (0 ≤ z ≤ 0.1z i ,) is affected by the surface roughness height z 0, where z i /z 0 is typically larger than 1000. The surface temperature θ s exceeds the temperature θ m of the mixed layer by an amount ∆θ = θ s θ m as a function of T *. and z i /z 0.


Mixed Layer Rayleigh Number Large Eddy Simulation Pressure Fluctuation Momentum Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Adrian, R.T.D.S. Ferreira, T. Boberg: Experim. in Fluids 4, 121 (1986)Google Scholar
  2. 2.
    J.A. Businger: Bound.-Layer Meteorol. 4, 323 (1973)CrossRefADSGoogle Scholar
  3. 3.
    F.H. Busse: J. Fluid Mech. 37, 457 (1969)CrossRefMATHADSGoogle Scholar
  4. 4.
    F.H. Busse, J.A. Whitehead: J. Fluid Mech. 66, 67 (1974)CrossRefADSGoogle Scholar
  5. 5.
    R.B. Chatfield, R.A. Brost: J. Geophys. Res. 92, D11, 13263 (1987)Google Scholar
  6. 6.
    J.W. Deardorff, G.E. Willis: Bound.-Layer Meteorol. 32, 205 (1985)CrossRefADSGoogle Scholar
  7. 7.
    A.J. Dyer: Bound.-Layer Meteorol. 7, 363 (1974)CrossRefADSGoogle Scholar
  8. 8.
    A.S. Frisch, J.A. Businger: Bound.-Layer Meteorol. 3, 301 (1973)CrossRefADSGoogle Scholar
  9. 9.
    R.H. Kraichnan: Phys. Fluids 5, 1374 (1962)CrossRefADSGoogle Scholar
  10. 10.
    P.J. Mason: J. Atmos. Sci, in press (1989)Google Scholar
  11. 11.
    H. Schmidt: DFVLR-FB-88–30 (1988)Google Scholar
  12. 12.
    H. Schmidt, U. Schumann: J. Fluid Mech., in press (1989)Google Scholar
  13. 13.
    U. Schumann: Bound.-Layer Meteorol. 44, 311 (1988)CrossRefADSGoogle Scholar
  14. 14.
    U. Schumann, T. Hauf, H. Höller, H. Schmidt, H. Volkert: Beitr. Phys. Atmosph. 60, 413 (1987)MATHGoogle Scholar
  15. 15.
    G.E. Willis, J.W. Deardorff: J. Geophys. Res. 84, C1, 295 (1979)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • U. Schumann
    • 1
  • H. Schmidt
    • 1
  1. 1.Institut für Physik der AtmosphäreDLROberpfaffenhofenFed. Rep. of Germany

Personalised recommendations