The “Three Columns” for Treating Problems in Optimum Structural Design

  • Hans A. Eschenauer
Part of the Lecture Notes in Engineering book series (LNENG, volume 47)


The software package SAPOP (Structural Analysis Program and Optimization Procedure) has been developed as an optimization procedure on the basis of various calculation methods of structural mechanics applying algorithms of the mathematical programming and the important “optimization modelling”. Besides the actual formulation of the optimization problems, the optimization model consists of the so-called “strategies”. Presuming several criteria or objective functions, various techniques of vector or multicriteria optimization will be used as a strategy. Further strategies were established and implemented for shape optimization problems and multilevel optimization techniques (decomposition strategy). The practical application and some results of the efficiency of the developed optimization procedure are shown by two examples from space research, among others the design of highly accurate radio telescopes and the shape optimization of a satellite tank.


Objective Function Optimization Procedure Sandwich Panel Dead Weight Multicriteria Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Stadler, W.: Natural Structural Shapes (A Unified Optimal Design Philosophy). In: Multicriteria Optimization in Engineering and in Sciences by W. Stadler (ed.),New York, London, Plenum Press 1988, 355–390Google Scholar
  2. [2]
    Eschenauer, H.A.: Numerical and Experimental Investigations on Structural Optimization of Engineering Designs. DFG-Research Report, Universität-GH Siegen 1985Google Scholar
  3. [3]
    Eschenauer, H.A., Post, P.U., Bremicker, M., Einsatz der Optimierungsprozedur SAPOP zur Auslegung von Ðauteilkomponenten. Bauingenieur 63 (1988)Google Scholar
  4. [4]
    Eschenauer, H.A., Koskl, J., Osyczka, A.: Multicriteria Design Optimization. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag (to appear 1989)Google Scholar
  5. [5]
    Bremicker, M., Eschenauer, H.A.: Über die Leistungsfähigkeit einiger MP-Algorithmen im Gestaltsoptimierungsprozeß, ZAMM 69, 4/5 (1989) T358–T360Google Scholar
  6. [6]
    Lootsma, F.A., Ragsdell, K.M.: State-of-the-Art in Parallel Nonlinear Optimization. Parallel Computing 8 (1988) 133–155CrossRefMathSciNetGoogle Scholar
  7. [7]
    Stadler, W. (ed.): Multicriteria Optimization in Engineering and in Sciences. New York, London: Plenum Press 1988MATHGoogle Scholar
  8. [8]
    Sattler, H-J.: Ersatzprobleme für Vektoroptimieriingsaufgaben und ihre Anwendung in der Strukturmechanik. Dissertation, Universität-GH Siegen, 1982.Google Scholar
  9. [9]
    Osyczka, A.: Multicriterion Optimization in Engineering. New York, Chichester, Brisbane. Toronto: John Wiley 1984Google Scholar
  10. [10]
    Kneppe, G.: Direkte Lösungsstrategien zur Gestaltsoptimierung von Flächentragwerken. Dissertation. Universität-GH Siegen, 1985Google Scholar
  11. Schmlt, L.A., Ramanathan, R.K.: Multilevel Approach to Minimum Weight Design Including Buckling Constraints. AIAA-J Vol. 16, No.2, 1978, 97–104.CrossRefGoogle Scholar
  12. [12]
    Sobieszczanskl-Sobieski, J.S., James, B.B., Dovl, A.R.: Structural Optimization by Multilevel Decomposition. American Institute of Aeronautics and Astronautics 23 (1985) 1775–1782Google Scholar
  13. [13]
    Klrsch, U.: Multilevel Optimal Design of Reinforced Concrete Structures. In: Eschenauer, H., Olhoff, N,: Optimization Methods in Structural Design. Mannheim: BI-Verlag (1983) 156–161Google Scholar
  14. [14]
    Bremicker, M.: Dekompositionsstategie in Anwendung auf Probleme der Gestaltsoptimierung. Dissertation. Universität-GH Siegen, 1989.Google Scholar
  15. [15]
    Bremicker, M., Eschenauer, H., Post, P.: On a Decomposition Technique within the Scope of a Design Optimization Process. In: Discretization Methods and Structural Optimization-Procedures and Applications by II.A. Eschenauer; G. Thierauf (eds.), Springer-Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989Google Scholar
  16. [16]
    Ruze, J.: Antenna Tolerance Theory-A Review, Proceedings of the IEEE, 54 (1987) 472–477Google Scholar
  17. [17]
    Eschenauer, H.A.: Multicriteria Optimization Techniques for Highly Accurate Focusing Systems. In: Multicriteria Optimization in Engineering and in the Sciences by W. Stadler (ed.). Plenum Publishing Corporation, 1988, 309–354Google Scholar
  18. [18]
    Adali, S.: Multiobjective Design of an Antisymmetric Angle-Ply Laminate by Nonlinear Programming. Journal of Mechanisms, Transmission and Automation in Design, Transactions of the ASME, Vol. 105, (1983) 214–219Google Scholar
  19. [19]
    Eschenauer, H.: Optimierung ebener Flächentragwerke aus Verbundwerkstoff. Zeitschrift für Flugwissenschaften und Weltraumforschung, Bd. 8, H. 6 (1984) 367–378Google Scholar
  20. [20]
    Eschenauer, H., Fuchs, W.: Modelling, structural analysis and optimization of composite structures. Zeitschrift für Flugwissenschaften und Weltraumforschung, Bd. 11, H. 4/5, (1987) 201–210MATHGoogle Scholar
  21. [21]
    Eschenauer, H.A.: Shape Optimization of Ultra Light Shell Structures in Space Technology. J. Structural Optimization, No. 1, 1989Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • Hans A. Eschenauer
    • 1
  1. 1.Research Laboratory for Applied Structural OptimizationUniversity of SiegenSiegenGermany

Personalised recommendations