Advertisement

Resonant Tunnelling Devices in a Quantising Magnetic Field

  • L. Eaves
  • E. S. Alves
  • M. Henini
  • O. H. Hughes
  • M. L. Leadbeater
  • C. A. Payling
  • F. W. Sheard
  • G. A. Toombs
  • A. Celeste
  • J. C. Portal
  • G. Hill
  • M. A. Pate
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 87)

Abstract

High magnetic fields, applied either parallel or perpendicular to the barriers, are extremely useful for investigating the electrical properties of resonant tunnelling structures [1–11]. By considering the current-voltage characteristics of a variety of double barrier structures (DBS) based on n-(AIGa)As/GaAs with differing well and barrier thicknesses, we show how quantising magnetic fields can be used to study tunnelling processes in which transverse momentum is conserved; the charge distribution in the device, particularly the build-up of electronic charge in the quantum well at resonance; intrinsic bistability; non-resonant elastic and inelastic scattering processes which do not conserve transverse momentum; ballistic transport involving electrons tunnelling into hybrid magneto-electric states of wide quantum wells.

Keywords

Reverse Bias Landau Level Resonant Tunnelling Applied Voltage Versus Double Barrier Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    E. E. Mendez., L. Esaki and W. I. Wang: Phys. Rev. B33, 2893 (1986)CrossRefGoogle Scholar
  2. 2.
    V. J. Goldman et al: Phys. Rev. B35, 9387 (1987)CrossRefGoogle Scholar
  3. 3.
    V. J. Goldman et al: Phys. Rev. B36, 7635 (1987)CrossRefGoogle Scholar
  4. 4.
    E. E. Mendez: Int. School of Solid State Devices Research, NATO ASI Series B, 170, Erice, Sicily (1987)Google Scholar
  5. 5.
    V. J. Goldman et al: J. Physique 48, C5–463 (1987)Google Scholar
  6. 6.
    H. Bando et al: Proc. 18th Int. Conf. on Low Temperature Physics, Kyoto 1987. Jap. J. Appl. Phys. 26 (Supplement 26–3) (1987)Google Scholar
  7. 7.
    C. A. Payling et al: J. Physique 48, C5–289 (1987)Google Scholar
  8. 8.
    C. A. Payling et al: Surf. Sci. 196, 404 (1988)CrossRefGoogle Scholar
  9. 9.
    L. Eaves et al: Appl. Phys. Lett. 52, 212 (1988)CrossRefGoogle Scholar
  10. 9.
    cf. G. A. Toombs et al: GaAs and Related Compounds, Inst. Phys. Conf. Ser. 91, 581 (1987)Google Scholar
  11. 10.
    F. W. Sheard and G. A. Toombs: Appl. Phys. Lett. 52, 1228 (1988)CrossRefGoogle Scholar
  12. 11.
    L. Eaves et al: Physics and Technology of Sub-Micron Structures, to be published in Springer-Verlag Solid State Series (1988)Google Scholar
  13. 12.
    V. J. Goldman et al: Phys. Rev. Lett. 58, 1256, ibid. 1623 (1987)Google Scholar
  14. 13.
    T. C. L. G. Sollner: Phys. Rev. Lett. 59, 1622 (1987)CrossRefGoogle Scholar
  15. 14.
    E. S. Alves et al: Electronics Lett. (in press)Google Scholar
  16. 15.
    K. Kim and W. A. Spitzer: J. Appl. Phys. 50, 4362 (1979)CrossRefGoogle Scholar
  17. 16.
    C. W. J. Beenakker and H. van Houten: Phys. Rev. Lett. 60, 2406 (1988)CrossRefGoogle Scholar
  18. 17.
    B. R. Snell et al: Phys. Rev. Lett. 59, 2806 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • L. Eaves
    • 1
  • E. S. Alves
    • 1
  • M. Henini
    • 1
  • O. H. Hughes
    • 1
  • M. L. Leadbeater
    • 1
  • C. A. Payling
    • 1
  • F. W. Sheard
    • 1
  • G. A. Toombs
    • 1
  • A. Celeste
    • 2
    • 3
  • J. C. Portal
    • 2
    • 3
  • G. Hill
    • 4
  • M. A. Pate
    • 4
  1. 1.Department of PhysicsUniversity of NottinghamNottinghamUK
  2. 2.SNCI-CNRSGrenobleFrance
  3. 3.LPS, INSAToulouseFrance
  4. 4.Department of Electronic EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations