Conductance Fluctuations on the Quantum Hall Plateaus in GaAs/AlGaAs

  • R. G. Mani
  • J. R. Anderson
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 87)


The gauge invariance arguments of Laughlin imply perfect quantization of the quantum Hall plateaus /1/ and Hall voltage measurements using digital time-averaging, null detection techniques at fixed values of the magnetic field have shown that the Hall plateaus are flat to ∼ 0.01 parts in 106 (i.e. 0.01 ppm) /2/ even though the current path within the sample switches continuously with the magnetic field over the field range defined by the plateau region /3/. Although the Hall steps are flat at the lowest temperatures, ρxy can deviate from h/ve2 by up to several ppm, following the relation ∆ρxy = ρxy(T) − ρxy (0) ∼ sρxx min with s a sample dependent parameter of order 1 /2/. This high degree of quantization has possibly set new resistance standards while motivating considerable theoretical work on the role of disorder in high field 2D transport.


Quantum Hall Effect Defense Advance Research Project Agency Conductance Fluctuation Hall Plateau Quantum Hall Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review see The Quantum Hall Effect ed. by R. E. Prange and S. M. Girvin, Graduate Texts in Contemp. Phys., (Springer, New York, 1987).Google Scholar
  2. 2.
    M. Cage, B. Field, R. Dziuba, S. Girvin, A. Gossard, and D. Tsui, Phys. Rev. B30, 2286 (1984).Google Scholar
  3. 3.
    G. Ebert, K. von Klitzing, and G. Weimann, J. Phys. C: Sol. St. Phys. 18, L257 (1985);Google Scholar
  4. H. Zheng, D. Tsui, and A. Chang, Phys. Rev. B32, 5506 (1985)Google Scholar
  5. 4.
    M. Cage, R. Dziuba, B. Field, E. Williams, S. Girvin, A. Gossard, D. C. Tsui, and R. Wagner, Phys. Rev. Lett. 51, 1374 (1983).CrossRefGoogle Scholar
  6. 5.
    G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard, Phys. Rev. Lett. 58, 2814 (1987).CrossRefGoogle Scholar
  7. 6.
    R. G. Mani and J. R. Anderson, Phys. Rev. B37, 4299 (1988).Google Scholar
  8. 7.
    D. Syphers, K. Martin, and R. J. Higgins, Surf. Sci. 170, 222 (1986).CrossRefGoogle Scholar
  9. 8.
    G. Ebert, K. von Klitzing, C. Probst, E. Schuberth, K. Ploog, and G. Weimann, Sol. St. Comm., 45, 625 (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • R. G. Mani
    • 1
    • 2
  • J. R. Anderson
    • 1
    • 2
  1. 1.Joint Program for Advanced Electronic Materials, Department of PhysicsUniversity of MarylandCollege ParkUSA
  2. 2.Laboratory for Physical SciencesCollege ParkUSA

Personalised recommendations