Resonant-Subband Landau-Level Coupling in a Two-Dimensional Electronic System: Depolarization Effect and Dependence on Carrier Density

  • K. Ensslin
  • D. Heitmann
  • K. Ploog
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 87)


For a quantitative understanding of the properties of a two-dimensional electron gas the exact knowledge of subband energies and wavefunctions is very important [1].Experimentally one usually applies optical techniques such as Raman scattering [2,3] and resonant-subband-Landau-level-coupling (RSLC) spectroscopy [4–6]. Using Raman scattering the presence of strong bandgap radiation causes quasi-accumulation conditions and fixes the two-dimensional (2D) carrier density Ns. So far RSLC was investigated as a function of bandgap illumination [5,6] or back-gate voltage [5], which both strongly influence the depletion charge N depl of an Al x Ga 1−x As - GaAs heterostructure. In particular it was not clear whether the energies, determined from RSLC experiments, are depolarization shifted as in charge density excitation experiments [3]. Therefore it was difficult to compare experiments and results of self-consistent calculations [7,8] in a satisfactory manner Here we prepared modulation doped Al x Ga 1−x As - GaAs heterostructures with front-gates which allowed us to change N, in a controlled and reproducible way [9,10] .This gave us the possibility to study RSLC as a function of Ns,while all other parameters remained essentially unchanged. The agreement between our experimental results and a self-consistent calculation is excellent and clearly reveals that the energies, determined from RSLC experiments, are depolarization shifted.


Carrier Density Cyclotron Resonance Depolarization Effect Gate Area Subband Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, A. B. Fowler, and F.Stern: Rev. Mod. Phys. 54, 437 (1982)CrossRefGoogle Scholar
  2. 2.
    G. Abstreiter and K. Ploog: Phys. Rev. Lett. 42, 1308 (1979)CrossRefGoogle Scholar
  3. 3.
    A. Pinczuk, J. M. Worlock, H. L. Störmer, R. Dingle, W. Wiegmann, and A. C. Gossard: Solid State Commun. 36, 43 (1980)CrossRefGoogle Scholar
  4. 4.
    Z. Schlesinger, J. C. M. Hwang, and S. J. Allen: Phys. Rev. Lett. 50, 2098 (1983)CrossRefGoogle Scholar
  5. 5.
    G. L. J. A. Rikken, H. Sigg, C. J. G. M. Langerak, H. W. Myron, J. A. A. J. Perenboom, and G. Weimann: Phys. Rev. B 34, 5590 (1986)CrossRefGoogle Scholar
  6. 6.
    A. D. Wieck, J. C. Maan, U. Merkt, J. P. Kotthaus, K. Ploog, and G. Weimann: Phys. Rev. B 35, 4145 (1987)Google Scholar
  7. 7.
    F. Stern and S. Das Sarma: Phys. Rev. B 30, 840 (1984)Google Scholar
  8. 8.
    T. Ando: J. Phys. Soc. Jpn. 51, 3893 (1982)CrossRefGoogle Scholar
  9. 9.
    K. Ensslin, D. Heitmann, H. Sigg, and K. Ploog: Surf. Sci. 196, 263 (1988)CrossRefGoogle Scholar
  10. 10.
    K. Ensslin, D. Heitmann, H. Sigg, and K. Ploog: Phys. Rev. B 36, 8177 (1987)Google Scholar
  11. 11.
    Al2O3 suppresses leakage currents, idea of J. RichterGoogle Scholar
  12. 12.
    F. Thiele, U. Merkt, J. P. Kotthaus, G. Lommer, F. Malcher, U. Rössler, and G. Weimann: Solid State Commun. 62, 841 (1987)CrossRefGoogle Scholar
  13. 13.
    E. Batke, H. L. Störmer, A. C. Gossard, and J. H. English: Phys. Rev. B 37, 3093 (1988)CrossRefGoogle Scholar
  14. 14.
    T. Ando: Phys. Rev. B 19, 2106 (1979)Google Scholar
  15. 15.
    T. Ando: Z. Physik B 26, 263 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • K. Ensslin
    • 1
  • D. Heitmann
    • 1
  • K. Ploog
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany

Personalised recommendations