Advertisement

High Magnetic Fields as a Tool to Study the Optical Properties of Quantum Wells and Superlattices

  • J. C. Maan
  • M. Potemski
  • Y. Y. Wang
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 87)

Abstract

The application of high magnetic fields has proven to be a very fruitful technique for studying the fundamental properties of semiconductors. The effect of a field is to quantize the band structure, to split spin degenerate levels, and to quantize the orbital motion. In this paper we will briefly describe three different phenomena, which are observable only because of this threefold quantization. In the next chapter we will study the luminescence in GaAs/GaA1As quantum well under high excitation in magnetic fields. The quantization of energy by the field serves to create richer spectra and to obtain more detailed information about the many-particle states. In chapter III we will study relaxation between spin split Landau levels in similar samples, and we will show that the discrete nature of spin split levels in two-dimensional systems leads to a bottleneck in the energy relaxation. Finally in chapter IV we show results of theoretical calculations of the energy levels in quasi-periodic Fibonacci superlattices, and show that the orbital quantization which can be varied by the field, can lead to self-similarity in the energy dispersion.

Keywords

Excitation Spectrum High Magnetic Field Landau Level Exciton Binding Energy Spin Split 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. W. Bauer and T. Ando, Phys. Rev. Lett. 50, 601 (1987).CrossRefGoogle Scholar
  2. 2.
    S. R. Eric Yang and L. Sham, Phys. Rev. Lett. 58, 2598 (1987).CrossRefGoogle Scholar
  3. 3.
    F. Ancilotto, A. Fasolino, and J. C. Maan, J. Superlatt. Microstr. 3, 187 (1987).CrossRefGoogle Scholar
  4. 4.
    J. C. Maan,in “Physics and Applications of Quantum Wells and Superlattices”,ed. E.E.Mendez and K. von Klitzing, ASI series B:Physics Vol 170, Plenum, New York,(1987)Google Scholar
  5. 5.
    P. Nozieres, Physica I17/118B, 16 (1983).Google Scholar
  6. 6.
    T. M. Rice, J. C. Hensel, T. G. Philips, G. A. Thomas, Solid State Physics 32 (1977).Google Scholar
  7. 7.
    S. Schmitt - Rink, C. Ell, and H. Haug, Phys.Rev. B33, 1183 (1986).Google Scholar
  8. 8.
    R. C. Miller, D. A. Kleinman, O. Munteanu, and W. T. Tsang, Appl. Phys. Lett. 39, 1 (1981).CrossRefGoogle Scholar
  9. 9.
    G. Tränkle, H. Leier, A. Forchel, H. Haug, C. Ell, and G. Weimann, Phys. Rev. Lett. 58, 419, (1987).CrossRefGoogle Scholar
  10. 10.
    C. Delalande, G. Bastard, J. Orgonasi, J. A. Brum, H. W. Liu, M. Voos, G. Weimann, W. Schlapp, Phys. Rev. Lett. 59, 2690, (1987).CrossRefGoogle Scholar
  11. 11.
    G.E.W. Bauer, Proc. 19th Int. Conf. on the Physics of Semiconductors, Warsaw, (1988)Google Scholar
  12. 12.
    C. Hermann and G. Lampe!, Ann. Phys. Fr. 10, 1117, (1985)CrossRefGoogle Scholar
  13. 13.
    R. Merlin, K. Bajema and R. Clarke, Phys. Rev. Lett. 55, 1768, (1985)CrossRefGoogle Scholar
  14. 14.
    M. Kohmoto, B. Sutherland and C.Tang, Phys. Rev. 35, 1020 (1987)CrossRefGoogle Scholar
  15. 15.
    G. Belle, J. C. Maan and G. Weimann, Solid State Commun, 56, 65 (1985)CrossRefGoogle Scholar
  16. 16.
    T.Duffield, R. Bhat, M. Koza, D. M. Hwang, P. Grabbe and S. J. Allen, Phys. Rev. Lett. 56, 2724 (1986)CrossRefGoogle Scholar
  17. 17.
    J. C. Maan, in: Festkörperprobleme (Advances in Solid State Physics), Vol.27, 137 (1987)Google Scholar
  18. 18.
    M. R. Schroeder, “Number Theory in Science and Communication”, Springer series in Information Sciences, Vol. 7, Springer, Berlin (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • J. C. Maan
    • 1
  • M. Potemski
    • 1
  • Y. Y. Wang
    • 1
  1. 1.Max-Planck-Institut für Festkörperforschung, HMLGrenoble CedexFrance

Personalised recommendations