Advertisement

Classification of Magneto-excitons in Quantum Wells

  • L. J. Sham
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 87)

Abstract

In an undoped quantum well, the exciton lines dominate in the optical spectra whether the magnetic field is present or not. The theory of magneto-exciton by Yang and Sham which includes the effect of the degenerate valence band edge is reviewed here with the emphasis on explaining the classification of the lines in order to facilitate interpretation of experiments.

Keywords

Angular Momentum Landau Level Exciton State Angular Momentum Quantum Number Exciton Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    For a review, see R.C. Miller and D.A. Kleinman: J. Lumin. 30, 520 (1985)CrossRefGoogle Scholar
  2. 2.
    D.A.B. Miller: Surf. Sci. 174, 221 (1986)CrossRefGoogle Scholar
  3. 3.
    J.C. Maan, G. Belle, A. Fasolino, M. Altarelli and K. Ploog: Phys. Rev. B 30, 2253 (1984)CrossRefGoogle Scholar
  4. 4.
    S. Tarucha, H. Okamoto, Y. Iwasa and N. Miura: Solid State Comm 52, 815 (1984)CrossRefGoogle Scholar
  5. 5.
    W. Ossau, B. Jakel, E. Bangert, G. Landwehr and G. Weimann: Surf. Sci. 174, 188 (1986)CrossRefGoogle Scholar
  6. 6.
    D.C. Rogers, J. Singleton, R.J. Nicholas, C.T. Foxon and K. Woodbridge: Phys. Rev. B 34, 4002 (1986)CrossRefGoogle Scholar
  7. 7.
    F. Ancilotto, A. Fasolino, and J.C. Maan: Superlattices and Microstructures 3, 187 (1987)CrossRefGoogle Scholar
  8. 8.
    S.-R. Eric Yang and L.J. Sham: Phys. Rev. Lett. 58, 2598 (1987)CrossRefGoogle Scholar
  9. 9.
    O. Akimoto and H. Hasegawa: J. Phys. Soc. Jpn. 22, 181 (1967)CrossRefGoogle Scholar
  10. 10.
    J.M. Luttinger: Phys. Rev. 102, 1030 (1956)CrossRefGoogle Scholar
  11. 11.
    W. Lamb: Phys. Rev. 85, 259 (1952)CrossRefGoogle Scholar
  12. 12.
    This is similar to the impurity case, given by A.H. MacDonald and D.S. Ritchie: Phys. Rev. B 33, 8336 (1986)CrossRefGoogle Scholar
  13. 13.
    B. Zhu and K. Huang: Phys. Rev. B 31, 8102 (1987)CrossRefGoogle Scholar
  14. 14.
    S.-R. Eric Yang, D.A. Broido, and L.J. Sham: Phys. Rev. B 31 6630 (1985)CrossRefGoogle Scholar
  15. 15.
    S.-R. Eric Yang: Ph.D. Thesis, University of California, San Diego (1986)Google Scholar
  16. 16.
    L.J. Sham: In High Magnetic Fields in semiconductor Physics ed. by G. Landwehr (Springer, Berlin, Heidelberg 1987 ) p. 288Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • L. J. Sham
    • 1
  1. 1.Department of Physics, B-019University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations