Advertisement

The Fractional Quantum Hall Effect with an Added Parallel Magnetic Field

  • J. E. Furneaux
  • D. A. Syphers
  • A. G. Swanson
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 87)

Abstract

The fractional quantum Hall states with fractions between 2 and 1 have been studied in the presence of an added parallel magnetic field. The fractional states in this range are observed to behave differently than those associated with fractions less than 1. Whereas there is a definite symmetry about 1/2 for the fractions less than 1, there is no correspondingly simple symmetry about 3/2 for the fractions between 2 and 1. The implications of these results for the hierarchical model and for calculations involving an exact numerical diagonalization for a small number of electrons are discussed.

Keywords

Hierarchical Model Inversion Symmetry Parallel Field Parallel Magnetic Field Lower Landau Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    For a comprehensive review see The Quantum Hall Effect, ed. by R. E. Prange and S. M. Girvin (Springer, New York, 1987).Google Scholar
  2. 2.
    D. A. Syphers and J. E. Furneaux, Surf. Sci. 196, 252 (1988).CrossRefGoogle Scholar
  3. 3.
    D. A. Syphers and J. E. Furneaux, Sol. St. Commun. 65, 1513 (1988).CrossRefGoogle Scholar
  4. 4.
    R. J. Haug, K. von Klitzing, R. J. Nicholas, J. C. Maan, and G. Weimann, Phys. Rev. B36, 4528 (1987); Surf. Sci. 196, 242 (1988).Google Scholar
  5. 5.
    R. G. Clark, J. R. Mallett, A. Usher, A. M. Suckling, R. J. Nicholas, S. R. Haynes, Y. Journaux, J. J. Harris, and C. T. Foxon, Surf. Sci. 196, 219 (1988).CrossRefGoogle Scholar
  6. 6.
    J. E. Furneaux, D. A. Syphers, and A. G. Swanson, To be Published.Google Scholar
  7. 7.
    R. G. Clark, R. J. Nicholas, M. A. Brummell, A. Usher, S. Collocott, J. C. Portal, F. Alexandre, and J. M. Masson, Sol. St. Commun. 56, 173 (1985).CrossRefGoogle Scholar
  8. 8.
    G. S. Boebinger, A. M. Chang, H. L. Störmer, and D. C. Tsui, Phys. Rev. B32, 4268 (1985).Google Scholar
  9. 9.
    J. P. Eisenstein, private communication has seen the same lack of change in ∆ at 5/3.Google Scholar
  10. 10.
    T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).CrossRefGoogle Scholar
  11. 11.
    A. H. MacDonald and G. C. Aers, Phys. Rev. B29, 5976 (1984).Google Scholar
  12. 12.
    F. C. Zhang and S. Das Sarma, Phys. Rev. B33, 2903 (1986).Google Scholar
  13. 13.
    D. Yoshioka, J. Phys. Soc. Jpn. 55, 885 (1986).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • J. E. Furneaux
    • 1
    • 2
    • 3
  • D. A. Syphers
    • 4
    • 2
  • A. G. Swanson
    • 5
    • 2
  1. 1.Naval Research LaboratoryUSA
  2. 2.Visiting Scientist Francis Bitter National Magnet LaboratoryMITCambridgeUSA
  3. 3.Department of PhysicsBoston UniversityBostonUSA
  4. 4.Department of PhysicsBowdoin CollegeBrunswickUSA
  5. 5.Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations