Advertisement

The Influence of Contacts on the Quantized Hall Effect

  • R. Woltjer
  • M. J. M. de Blank
  • J. J. Harris
  • C. T. Foxon
  • J. P. André
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 87)

Abstract

The influence of electrical contacts on the magnetotransport in the quantized Hall regime is measured on various geometries in GaAs - A1xGa1−xAs heterostructures. The observed effects are interpreted in terms of a local resistivity tensor without taking into account the possible existence of macroscopic quantum states or localization. In special geometries with large contacts we measure, and explain, a two-terminal resistance that is smaller than the Hall resistivity. Furthermore the effects of large Hall contacts in a normal Hall bar geometry are calculated and we show why the measured Hall resistance can be smaller than the true Hall resistance, with their difference proportional to the magnetoresistance, leading to a dip at the strong-field side of Hall plateaus. This extends our interpretation in terms of a (inhomogeneous) local resistivity tensor to real samples with metal contacts.

Keywords

Metal Contact Special Geometry Quantized Hall Effect Resistivity Tensor Hall Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.F. Fang and P. J. Stiles: Phys.Rev. B 29, 3749 (1984).Google Scholar
  2. 2.
    D.A. Syphers and P. J. Stiles: Phys.Rev. B 32, 6620 (1985).Google Scholar
  3. 3.
    W. van der Wel, J. E. Mooij and C.J.P.M. Harmans: J.Phys. C 21, L171 (1988)Google Scholar
  4. 4.
    E.L. Al’tshuler and N.N. Trunov: Meas.Tech. 29, 796 (1986)Google Scholar
  5. 5.
    Q. Niu and D. J. Thouless: Phys.Rev. B 35, 2188 (1987).Google Scholar
  6. 6.
    B. Neudecker and K.H. Hoffmann: Solid State Comm. 62, 135 (1987).Google Scholar
  7. 7.
    G.L.J.A. Rikken, J.A.M.M. van Haaren, W. van der Wel, A.P. van Gelder, H. van Kempen, P. Wyder, J.P. André, K. Ploog and G. Weimann: Phys. Rev. B 37, 6181 (1988)Google Scholar
  8. 8.
    R. Woltjer, R. Eppenga and M.F.H. Schuurmans: In High magnetic fields in semiconductor physics, ed. G. Landwehr, ( Springer, Berlin 1987 ) p. 104CrossRefGoogle Scholar
  9. 9.
    R. Woltjer: PhD thesis University of Utrecht, The Netherlands (1988)Google Scholar
  10. 10.
    A.C. Beer: Galvanomagnetic effects in Semiconductors, Sol.St.Phys.Suppl. 44, eds. H. Ehrenreich, F. Seitz and D. Turnbull, ( Academic, New York 1963 )Google Scholar
  11. 11.
    M.E. Cage, B.F. Field, R.F. Dziuba, S.M. Girvin, A.C. Gossard and D.C. Tsui: Phys. Rev. B 30, 2286 (1984)Google Scholar
  12. 12.
    R. Woltjer, R. Eppenga, J. Mooren, C.E. Timmering and J.P. André: Europhys. Lett. 2, 149 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • R. Woltjer
    • 1
  • M. J. M. de Blank
    • 1
  • J. J. Harris
    • 2
  • C. T. Foxon
    • 2
  • J. P. André
    • 3
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands
  2. 2.Philips Research LaboratoriesRedhill, SurreyUK
  3. 3.Lab. d’Electronique et de Physique AppliquéeLimeil-BrevannesFrance

Personalised recommendations