Advertisement

Universality and Scaling of Electronic Transport in the Integral Quantum Hall Effect

  • H. P. Wei
  • D. C. Tsui
  • M. A. Paalanen
  • A. M. M. Pruisken
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 87)

Abstract

Quantitative experimental results are obtained on the electronic transport in the integral quantum Hall effect in InGaAs/InP heterojunctions. Both the maximum of xy /dB and the inverse of the half width for ρ xx diverge like ~T −k We obtain k = 0.42 ± 0.04, independent of the Landau level index. These results confirm the prediction of the scaling theory that the characteristic power law behavior in the transport coefficients is a universal feature of delocalization in the integral quantum Hall effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Paalanen, D. C. Tsui and A. C. Gassard, Phys. Rev.B 23, 4566 (1982).Google Scholar
  2. 2.
    H. P. Wei, D. C. Tsui and A. M. M. Pruisken, Phys. Rev. B 33, 1488 (1986).Google Scholar
  3. 3.
    H. P. Wei, D. C. Tsui, M. A. Paalanen and A. M. M. Pruisken, “Scaling of the integral quantum Hall effect”, In G. Landwehr, editor, High magnetic fields in semiconductor Physics, page 11, Springer Verlag, (1987).Google Scholar
  4. 4.
    H. Z. Zheng, H. P. Wei and D. C. Tsui, Bull. Am. Phys. Soc. 32, 892 (1987).Google Scholar
  5. 5.
    A. M. M. Pruisken, “Field theory, scaling and the localization problem”, In R. Prange and S. Girvin, editors, The Quantum Hall Effect, page 117, Springer Verlag, (1986).Google Scholar
  6. 6.
    A. M. Chang and D. C. Tsui, Solid State Comm. 56, 153 (1985).CrossRefGoogle Scholar
  7. 7.
    A. M. M. Pruisken, “Universal singularities in the integral quantum Hall effect”, Columbia University preprint CU-TP-387 (submitted to Phys. Rev. Lett.).Google Scholar
  8. 8.
    D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).CrossRefGoogle Scholar
  9. 9.
    E. Abrahams, P. W. Anderson, P. A. Lee and T. V. Ramakrishnan, Phys. Rev. B 24, 6783 (1981).Google Scholar
  10. 10.
    B. L. Altshuler, A. G. Aronov and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982).Google Scholar
  11. 11.
    I. Affleck. Nucl. Phys. B 257, [FS14], 397 (1985).Google Scholar
  12. 12.
    H. Aoki and T. Ando, Phys. Rev. Lett. 54, 831 (1985).CrossRefGoogle Scholar
  13. 13.
    Y. Ono, J. Phys. Soc. Jpn. 51, 3544 (1982); 52, 2492 (1983); 53, 2342 (1984).Google Scholar
  14. 14.
    S. A. Trugman, Phys. Rev. B 27, 7539 (1983).Google Scholar
  15. 15.
    B. Shapiro, Phys. Rev. B 33, 8447 (1986).Google Scholar
  16. 16.
    S. W. Hwang, H. P. Wei and D. C. Tsui, (unpublished).Google Scholar
  17. 17.
    H. P. Wei, S. Y. Lin, D. C. Tsui and K. Alavi, Bull. Am. Phys. Soc. 33, 665 (1988).Google Scholar
  18. 18.
    R. J. Haug, K. v. Klitzing and K. Ploog, Phys. Rev. B 35, 5933 (1987).Google Scholar
  19. 19.
    B. E. Kane, D. C. Tsui and G. Weimann, Surf. Sci. 196, 183 (1988).CrossRefGoogle Scholar
  20. 20.
    D. C. Tsui, H. L. Störmer and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).CrossRefGoogle Scholar
  21. 21.
    R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).CrossRefGoogle Scholar
  22. 22.
    R. B. Laughlin, M. L. Cohen, J. M. Kosterlitz, H. Levine, S. B. Libby and A. M. M. Pruisken, Phys. Rev. B 32, 1311 (1985).Google Scholar
  23. 23.
    R. G. Clark, J. R. Mallett, A. Usher, A. M. Suckling, R. J. Nicholas, S. R. Haynes, Y. Journaux, J. J. Harris and C. T. Foxon, Surf. Sci. 196, 219 (1988).CrossRefGoogle Scholar
  24. 24.
    H. P. Wei, D. C. Tsui and R. A. Webb, (unpublished).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1989

Authors and Affiliations

  • H. P. Wei
    • 1
  • D. C. Tsui
    • 1
  • M. A. Paalanen
    • 2
  • A. M. M. Pruisken
    • 3
  1. 1.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.AT&T Bell LaboratoryMurray HillUSA
  3. 3.Pupin Physics LaboratoryColumbia UniversityNew YorkUSA

Personalised recommendations