Skip to main content

Nuclear Aerosol Measurement Techniques

  • Chapter
Advances in Fluid Mechanics Measurements

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 45))

Abstract

In this chapter the considerations and techniques used for aerosol measurement in nuclear reactor test facilities are presented. High pressure, temperature, levels of radioactivity and changing chemical composition during this type of experiment impose a number of constraints on the aerosol sampling system. The mechanisms of aerosol formation, transport and deposition within the system are described. The general equations of aerosol transport and deposition are given in detail and are applied for typical reactor aerosol sampling system conditions. The various techniques that could be employed for such systems also are reviewed. Finally, examples of three systems that have been used successfully in large-scale reactor accident experiments are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

B:

Boltzman’s constant (1.38E-16 erg/K)

C:

Cunningham slip correction factor = 1 + (λ/Dp) 2.514 + 0.80exp(−0.55DD\λ)

Cp :

Gas specific heat at constant pressure

dw :

Wire diameter

D:

Diffusion coefficient = BT τ/m

Dp :

Particle diameter

Dm :

Diameter of average mass

DT :

Tube diameter

F:

Fraction of aerosol lost or collection efficiency

g:

Gravitational acceleration (9.8m/s2)

h:

STEP channel height

h’:

STEP distance between wires

I:

Light intensity

k:

Coagulation coefficient

Ka :

Gas thermal conductivity

Kp :

Particle thermal conductivity

Kn :

Knudsen number = 2λ/Dp

L:

Tube length, path length

m:

Particle mass

N:

Particle concentration

Pe:

Peclet number = Pr · Re

Pr:

Prandtl number = Cpη/Ka

Q:

Volumetric flow rate

Qext :

Extinction coefficient

R:

Interception parameter = Dp/dw

RT :

Tube radius

Rb :

Radius of bend

Re:

Reynolds number =ρVDT

Stk:

Stokes number (for STEP wire) = ρDp 2CV/18ηdw

STK:

Stokes number (for pipe flow) = 4QCρDp 2/9πηDT 3

T:

Temperature

V:

Velocity

Va :

Bulk gas velocity in a tube

V’:

Gas streamline velocity

Vf :

Terminal settling velocity

Vth :

Thermophoretic velocity

W:

Nozzle diameter

δ:

Skin depth of laminar sublayer

∆R:

Radial displacement

∇T:

Temperature gradient

λ:

Mean free path of gas molecules

⌽:

Angle of bend in radians

η:

Gas absolute viscosity

ρ:

Particle density

ρg :

Fluid or gas density

τ:

Relaxation time = mC/3πDpη

θ:

Tube inclination angle in degrees

References

  • Miller, R.W., Applehans, A.D., Bolstad, J.O., Courtright, E.L., Novick, V.J., Alvarez, J.L., and Deason, V.A., Instrument Development Summary Report for the Power Burst Facility Severe Fuel Damage Series 2, EG&G Report FIN No. A6305, March 1984.

    Google Scholar 

  • Natanson, G. L., “Diffusion Precipitation of Aerosols on a Streamlined Cylinder with a Small Capture Coefficient”, Dokl. Akad. Nauk USSR, Vol. 11, p. 100, 1957.

    Google Scholar 

  • Novick, V. J., “The Use of Series Light Extinction Cells To Determine Aerosol Number Concentration”, Aerosol Science and Technology- In Press, 1988.

    Google Scholar 

  • Novick, V. J., and Alvarez, J. L. “Design of a Multistage Virtual Impactor”, Aerosol Science and Technology, Vol. 6, p. 63–70, 1987.

    Article  Google Scholar 

  • Nuclear Aerosols in Reactor Safety, Nuclear Energy Agency, Organization for Economic Co-Operation and Development, June 1979.

    Google Scholar 

  • Osetek, D.J., “Results of the Four Severe Fuel Damage Tests”, NUREG/CP-0090, Fiftheenth Water Reactor Safety Information Meeting, Gaithersburg, Maryland, October 26–30, 1987.

    Google Scholar 

  • Parker, G. W., “Experimental Techniques of the Characterization of Nuclear Aerosols”, p. 278–301, NUREG/CR-1724, 1980.

    Google Scholar 

  • Pui, D.Y.H., Romay-Novas, F., and Liu, B.Y.H., “Experimental Study of Particle Deposition in Bends of Circular Cross Section”, Aerosol Science and Technology, Vol. 7, p. 301–315, 1987.

    Article  Google Scholar 

  • Riest, P.C., Introduction of Aerosol Science, MacMillan Publishing Company, New York, New York, p. 259, 1984.

    Google Scholar 

  • Sauter, H. and Schutz, W., “Aerosol Release from a Hot Sodium Pool and Behavior in Sodium Vapor Atmosphere”, p. 84–94, NUREG/CR-1724, 1980.

    Google Scholar 

  • Schock, W., “Application of Optical Methods in Nuclear Aerosol Measurements”, p. 221–231, NUREG/CR -1724, 1980.

    Google Scholar 

  • Sem, G. J., and Daley, P. S., “Performance Evaluation of a New Piezoelectric Aerosol Sensor”, Aerosol Measurement, D.A. Lundgren et al.,Editors, University Presses of Florida, p. 672–686, 1979.

    Google Scholar 

  • Sinclair, D., Countess, R. J., Liu, B.Y.H., and Pui, D.Y.H., “Experimental Verification of Diffusion Battery Theory”, APCA Journal, Vol, 26, p. 661–663, 1976.

    Google Scholar 

  • Sinha, M. P., Griffin, C. E., Norris, D. D., and Friedlander, S. K., “Continuous Monitoring of Aerosols”, p. 54, NASA Tech Brief, Vol. 7, No. 1, Item #40, Fall 1982.

    Google Scholar 

  • Stechkina, I. B., and Fuchs, N. A., “Studies on Fibrous Aerosol Filters-I.Calculation of Diffusional Deposition of Aerosols in Fibrous Filters”, Ann. Occup. Hyg., Vol. 9, p. 59–64, 1966.

    Google Scholar 

  • Thomas, J.W.,“Gravity Settling of Particles in a Horizontal Tube”, APCA Journal,Vol. 8, p.32–34, 1958.

    Google Scholar 

  • Waldmann, L., and Schmitt, K. H., in Aerosol Science C. N. Davies, Editor, Academic Press, London, p. 137–161, 1966.

    Google Scholar 

  • Woods, D. C., “Measurement of Particulate Aerosol Mass Concentration Using Piezoelectric Crystal Microbalance”, Aerosol Measurement, D.A. Lundgren et al., Editors, University Presses of Florida, p. 119–130, 1979.

    Google Scholar 

  • Wright, A.L., Kress, T.S., and Smith, A.M., “ORNL Experiments to Characterize Fuel Release from the Reactor Primary Containment in Severe LMFBR Accidents NUREG/CR-1724, 1980.

    Google Scholar 

  • Yeh, H. C., “Use of Heat Transfer Analogy for a Mathematical Model of Respiratory Tract Deposition”, Bulletin of Mathematical Biology, 36, No. 2, p. 105–116, 1976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Dunn, P.F., Novick, V.J., Schlenger, B.J. (1989). Nuclear Aerosol Measurement Techniques. In: Gad-el-Hak, M. (eds) Advances in Fluid Mechanics Measurements. Lecture Notes in Engineering, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83787-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83787-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51136-6

  • Online ISBN: 978-3-642-83787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics