Skip to main content

Experiments in Drag-Reducing Polymer Flows

  • Chapter
Advances in Fluid Mechanics Measurements

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 45))

Abstract

Small amounts of high molecular weight polymers (a few parts per million by weight) dissolved in a solvent can reduce the turbulent flow frictional resistance from that of the pure solvent by as much as 90 percent. Since the viscosity of a polymer/solvent mix is slightly increased over that of the solvent alone, the fact that viscous drag is decreased is somewhat surprising. The study of these drag-reducing, non-Newtonian fluid flows received initial impetus from the study of Toms (1948). Since this work, the examination of the turbulent flow properties of dilute solutions of long chain high-molecular weight polymers has generated many hundreds of publications, of which a majority are experimental investigations. This preponderance of experimental studies is no doubt due to the difficult theoretical nature of the problem which must address not only the turbulent kinematics but also the interaction of a viscoelastic fluid with the turbulence. Several excellent reviews of the available experiments and possible explanations of this phenomenon have been published since Toms original work: Lumley (1969) & (1973), Hoyt (1972), Virk (1975), Little et al. (1975), and Berman (1978). Theoretical discussions of the drag reduction phenomenon can be found in Lumley (1973), Berman (1978) and a recent work by Ryskin (1987a). The text that follows includes a review of experimental methods utilized by both rheologists and fluid dynamicists in the examination of turbulent flows of drag-reducing polymer solutions. In addition, we review some of the major experimental findings and make recommendations for future research. Finally, we present some new measurements of wall pressure in a turbulent non-Newtonian channel flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achia, B.U. & Thompson, D.W. 1977 Structure of the turbulent boundary layer in drag-reducing pipe flow. J. Fluid Mech. 81, 439.

    Article  ADS  Google Scholar 

  • Bagley, E.B. 1957 End correction in the capillary flow of polyethylene. J. Appl. Phys. 28, 624.

    Article  ADS  Google Scholar 

  • Baid, K.M. & Metzner, A.B. 1977 Rheological properties of dilute polymer solutions determined in extensional and shearing experiments. Trans. Soc. Rheol. 21, 237.

    Article  Google Scholar 

  • Balakirshnan, C. & Gordon, R.J. 1971 New viscoelastic phenomenon and turbulent drag reduction. Nature 231, 177.

    ADS  Google Scholar 

  • Beard, D.W., Davies, M.H. & Walters, K. 1966 The stability of elastico-viscous flow between rotating cylinders. Part 3. Overstability in viscous and Maxwell fluids. J. Fluid Mech. 24, 321.

    Article  ADS  MathSciNet  Google Scholar 

  • Becraft, M.L. & Metzner, A.B. 1988 Bourdon tube effects in the fiber spinning apparatus. J. Rheol. 32, 243.

    Article  ADS  Google Scholar 

  • Belokon, V.S., Kalashnikov, V.N, Kudin, A.M. & Vlasov, S.A. 1973 Rheological properties of polymers reducing drag friction. Prog. Heat Mass Trans. 5, 233.

    Google Scholar 

  • Berman, N.S. 1978 Drag reduction by polymers. Ann. Rev. Fluid Mech. 10, 47.

    Article  ADS  Google Scholar 

  • Bird, R.B., Armstrong, R.C., & Hassager, O. 1987a Dynamics of Polymeric Liquids, 2nd Ed., Vol.1: Fluid Mechanics. Wiley, New York. 647 p.

    Google Scholar 

  • Bird, R.B., Curtiss, C.F., Armstrong, R.C., & Hassager, O. 1987b Dynamics of Polymeric Liquids, 2nd Ed., Vol.2: Kinetic Theory. Wiley, New York. 437 p.

    Google Scholar 

  • Brodnyan, J.G., Gaskins, F.H. & Philippoff, W. 1957 On normal stresses, flow curves, flow birefringence, and normal stresses of polyisobutylene solutions. Part II. Experimental. Trans. Soc. Rheol. 1, 109.

    Article  Google Scholar 

  • Chakraborty, A.K. & Metzner, A.B. 1986 Sink flows of viscoelastic fluids. J. Rheol. 30, 29.

    Article  MATH  ADS  Google Scholar 

  • Chang, C. & Schowalter, W.R. 1979 Secondary flow in the neighborhood of a cylinder oscillating in a viscoelastic fluid. J. N.-N. Fluid Mech. 6, 47.

    Article  Google Scholar 

  • Chiou, C.S. & Gordon, R.J. 1976 Vortex inhibition: Velocity profile measurements. AIChE J. 22, 947.

    Article  Google Scholar 

  • Chung, J.S. & Graebel, W.P. 1972 Laser anemometer measurements of turbulence in non-Newtonian pipe flows. Phys. Fluide 15, 546.

    Article  ADS  Google Scholar 

  • Crowley, D.G., Frank, F.C., Mackley, M.R & Stephenson, R.G. 1976 Localized flow birefringence of polyethylene oxide solutions in a four roll mill. J. Poly. Sci.: Poly. Phys. Ed. 14, 1111.

    Article  ADS  Google Scholar 

  • Dandridge, A., Meeten, G.H., Layec-Raphalen, M.N. & Wolff, C. 1979 Flow birefringence of dilute solutions of polyethyleneoxide of high molecular weight at high rates. Rheol. Acta 18, 275.

    Article  Google Scholar 

  • Darby, R. & Chang, H.D. 1984 Generalized correlation for friction loss in drag reducing polymer solutions. AIChE J. 30, 274.

    Article  Google Scholar 

  • Davies, J.M., Hutton, J.F., & Walters, K. 1977/78 A critical re-appraisal of the jet-thrust technique for normal stresses, with particular reference to axial velocity and stress rearrangement at the exit plane. J. N.-N. Fluid Mech. 3, 141–160.

    Article  MATH  Google Scholar 

  • DeGennes, P.G. 1974 Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60, 5030.

    Article  ADS  Google Scholar 

  • Denn, M.M. & Roisman, J.J. 1969 Rotational stability and measurement of normal stress functions in dilute polymer solutions. AIChE J. 15, 454.

    Article  Google Scholar 

  • Denn, M.M., Sun, Z.-S. & Rushton, B.D. 1971 Torque reduction in finite amplitude secondary flows of dilute polymer solutions. Trans. Soc. Rheol. 15, 415.

    Article  Google Scholar 

  • Deutsch, S. & Phillips, W.M. 1977 The use of the Taylor-Couette stability problem to validate a constitutive equation for blood. Biorheol. 14, 253.

    Google Scholar 

  • Donohue, G.L., Tiederman, W.G. & Reischman, M.M. 1972 Flow visualization of the near-wall region in a drag reducing channel flow. J. Fluid Mech. 56, 559.

    Article  ADS  Google Scholar 

  • Dunlap, P.N. & Leal, L.G. 1987 Dilute polystyrene solutions in extensional flows: birefringence and flow modification. J. N.-N. Fluid Mech. 23, 5.

    Article  Google Scholar 

  • Elata, C., Lehrer, J. & Kahanovitz, A. 1966 Turbulent shear flow of polymer solutions. Israel J. Tech. 4, 87.

    Google Scholar 

  • Ernst, W.D. 1966 Investigation of the turbulent shear flow of dilute aqueous cmc solutions. AIChE J. 12, 581.

    Article  Google Scholar 

  • Fabula, A.G. 1966 An experimental study of grid turbulence in dilute high-polymer solutions. Proceedings of the 6th Symposium on Navy Hydrodynamics,Washington ONR-ACR-136. 39.

    Google Scholar 

  • Farrell, C.J., Keller, A., Miles, M.J. & Pope, D.P. 1980 Conformational relaxation time in polymer solutions by elongational flow experiments: 1. Determination of extensional relaxation time and its molecular weight dependence. Polymer 21, 1292.

    Article  Google Scholar 

  • Fortuna, G. & Hanratty, T.J. 1972 The influence of drag-reducing polymers on turbulence in the viscous sublayer. J. Fluid Mech. 53, 575.

    Article  ADS  Google Scholar 

  • Friehe, C.A. & Schwartz, W.H. 1969 The use of pitot static tubes and hot-film anemometers in dilute polymer solutions. in: C.S. Wells (editor), Viscous Drag Reduction,Plenum Press, New York., 281.

    Google Scholar 

  • Fruman, D.H. & Barigah, M. 1982 Rheological interpretation of pressure anomalies of aqueous dilute polymer solutions (ADPS) in orifice flow. Rheol. Acta 21, 556.

    Article  Google Scholar 

  • Fuller, G.G. & Leal, L.G. 1980 Flow birefringence of dilute solutions in two-dimensional flows. Rheol. Acta 19, 580.

    Article  Google Scholar 

  • Galib, T.A. & Zandina A. 1984 Turbulent pressure fluctuations with conventional piezoelectric and miniature piezoresistive transducers. JASA Suppl. 1, 76.

    Google Scholar 

  • Georgelos, P.N. & Torkelson, J.M. 1988 The role of solution structure in apparent thickening behavior of dilute PEO/water systems. J. N.-N. Fluid Mech. 27, 191–204.

    Article  Google Scholar 

  • Ginn, R.F. & Denn, M.M. 1969 Rotational stability in viscoelastic liquids: Theory. AIChE J. 15, 450.

    Article  Google Scholar 

  • Giles, W.B. 1968 Similarity laws of friction-reduced flows. J. Hydronautics 2, 34.

    Article  Google Scholar 

  • Goldstein, R.J., Adrian, R.J. & Kreid, D.K. 1969 Turbulent and transition pipe flow of dilute aqueous polymer solutions. Ind. Eng. Chem. Fund. 8, 498.

    Article  Google Scholar 

  • Gollub, J.P. & Swinney, M.L. 1975 Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927.

    Article  ADS  Google Scholar 

  • Gordon, R.J. & Balakirshnan, C. 1972 Vortex inhibition: a new viscoelastic effect with importance in drag reduction and polymer characterization. J. Appl. Poly. Sci. 16, 1629.

    Article  Google Scholar 

  • Goren, Y., & Norbury, J.F. 1967 Turbulent flow of dilute aqueous polymer solutions. Trans. ASME: J. Basic Engg. 89, 814.

    Article  Google Scholar 

  • Greshilov, E.M., Evutshenko, A.V. & Lyamshev, L.M. 1975 Hydrodynamic noise and the Toms effect. Sov. Phys. Acoust. 21, 247.

    Google Scholar 

  • Hasegawa, T. & Iwaida, T. 1984 Experiments on elongational flow of dilute polymer solutions. Part II: Velocity field for the flow through small aperatures. J. N.-N. Fluid Mech. 15, 279–307.

    Article  Google Scholar 

  • Hasegawa, T., Fukutomi, K., & Narumi, T. 1988 Experimental estimation of elongational stresses of dilute polymer solutions and a related examination of some constitutive equations. J. N.-N. Fluid Mech. 27, 133–151.

    Article  Google Scholar 

  • Hikmet, R.A.M., Narh, K.A., Barham, P.J. & Keller, A. 1985 Adsorption-entanglement layers in flowing high-molecular weight polymer solutions. Prog. Coll. Poly. Sci. 71, 32.

    Article  Google Scholar 

  • Hoyt, J.W. & Fabula, A.G. 1964 The effect of additives on fluid friction. 5th Symposium on Naval Hydrodynamics, Bergen, Norway, ONR ACR-112, 947.

    Google Scholar 

  • Hoyt, J.W. 1971 Drag-reduction effectiveness of polymer solutions in the turbulent-flow rheometer: a catalog. Poly. Lett. 9, 851.

    Article  Google Scholar 

  • Hoyt, J.W. 1972 The effects of additives in fluid friction. Trans. ASME: J. Basic Engg. 94, 258.

    Article  Google Scholar 

  • Hoyt, J.W. 1980 Effect of ferric ions on drag reduction effectiveness of polyacrylamide. Poly. Sci. Engg. 20, 493.

    Article  Google Scholar 

  • Hussain, A.K.M.F. & Reynolds, W.C. 1975 Measurements in fully developed turbulent channel flow. Trans. ASME: J. Fluids Engg. 97, 568.

    Article  ADS  Google Scholar 

  • James, D.F., McLean, B.D. & Saringer, J.H. 1987 Presheared extensional flow of dilute polymer solutions. J. Rheol. 31, 453.

    Article  ADS  Google Scholar 

  • James, D.F. & Saringer, J.H. 1982 Flow of dilute polymer solutions through converging channels. J. N.-N. Fluid Mech. 11, 317.

    Article  Google Scholar 

  • Jones, W.M., Davies, D.M., & Thomas, M.C. 1973 Taylor vortices and the evaluation of material constants: a critical assessment. J. Fluid Mech. 60, 19.

    Article  MATH  ADS  Google Scholar 

  • Kowalik, R.M., Duvdevani, I., Peiffer, D.G., Lundberg, R.D., Kitano, K. & Schulz, D.N. 1987 Enhanced drag reduction via interpolymer associations. J. N.-N. Fluid Mech. 24, 1.

    Article  Google Scholar 

  • Larson, R. 1988 Constitutive Equations for Polymer Melts and Solutions. Butterworth, Stoneham, Massachusetts. 304 p.

    Google Scholar 

  • Lawler, J.V. 1986 Laser-Doppler velocimetry of viscoelastic flow between eccentric rotating cylinders. Ph.D. Thesis. MIT, Cambridge, Massachusetts.

    Google Scholar 

  • Lawler, J.V., Handler, R.A., Hendricks, E.W. & Leighton, R.I. 1987 Transient normal stresses in turbulent flows. Paper F5. 59th Ann. Meet. Soc. Rheol.,Atlanta, Georgia (in preparation).

    Google Scholar 

  • Little, R.C., Hansen, R.J., Hunston, D.L., Kim, O., Patterson, R.L. & Ting, R.Y. 1975 The drag-reduction phenomenon. Observed characteristics, improved agents, and proposed mechanisms. Ind. Eng. Chem. Fund. 14, 283.

    Article  Google Scholar 

  • Lodge, A.S. 1955 Variation of flow birefringence with stress. Nature 176, 838.

    Article  ADS  Google Scholar 

  • Logan, S.E. 1972 Laser velocimeter measurement of Reynolds stress and turbulence in dilute polymer solutions. PhD. Thesis, California Institute of Technology.

    Google Scholar 

  • Luchik, T.S. & Tiederman, W. G. 1988 Turbulent structure in low-concentration channel flows. J. Fluid Mech. (in press).

    Google Scholar 

  • Lumley, J.L. 1969 Drag reduction by additives. Ann. Rev. Fluid Mech. 1, 367.

    Article  ADS  Google Scholar 

  • Lumley, J.L. 1973 Drag reduction in turbulent flow by polymer additives. J. Polym. Sci: Macromol. Rev. 7, 263.

    Article  Google Scholar 

  • Matthys, E.F. 1987 Laser-induced photochromic flow visualization: measurement of velocities and deformation rates. Paper E14. 59th Annual Meeting of the Society of Rheology, Atlanta, Georgia, October 1987.

    Google Scholar 

  • McComb, W.D. & Rabie, L.H. 1982 Local drag reduction due to injection of polymer solutions into turbulent flow in a pipe. Pt I: Dependence on local polymer concentration; Pt II: Laser-Doppler measurements of turbulent structure. AIChE J. 28, 547.

    Article  Google Scholar 

  • Merrill, E.W. & Horn, A.F. 1984 Scission of macromolecules in dilute solution: Extensional and turbulent flows. Poly. Comm. 25, 144.

    Google Scholar 

  • Metzner, A.B., & Astarita, G. 1967 External flow of viscoelastic materials: fluid property restrictions on the use of velocity-sensitive probes. AIChE J. 13, 550.

    Article  Google Scholar 

  • Mizushina, T. & Usui, H. 1977 Reduction of eddy diffusion for momentum and heat in viscoelastic fluid flow in circular tube. Phys. Fluids 20, S100.

    Article  ADS  Google Scholar 

  • Odell, J.A. & Keller, A. 1986 Flow-induced chain fracture of isolated linear macromolecules in solution. J. Poly. Sci.: Poly. Phys. Ed.,24, 1889.

    Article  ADS  Google Scholar 

  • Oldaker, D.K. & Tiederman, W.G. 1977 Spatial structure of the viscous sublayer in drag reducing channel flows. Phys. Fluids 20, S133.

    Article  ADS  Google Scholar 

  • Patterson, G.K. & Florez, G.L. 1969 Velocity profiles during drag reduction. in: C.S. Wells (editor), Viscous Drag Reduction,Plenum Press, New York., 223.

    Google Scholar 

  • Phan-Thien, N., Manero, O., & Leal, L.G. 1984 A study of conformation-dependent friction in a dumbbell model for dilute solutions. Rheol. Acta 23, 151.

    Article  MATH  Google Scholar 

  • Philippoff, W. 1956 Flow-birefringence and stress. Nature 178, 811.

    Article  ADS  Google Scholar 

  • Reischman, M.M. & Tiederman, W.G. 1975 Laser-Doppler anemometer measurements in drag-reducing channel flows. J. Fluid Mech. 70, 369.

    Article  ADS  Google Scholar 

  • Rouse, P.E. 1953 A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272.

    Article  ADS  Google Scholar 

  • Rudd, M.J. 1972 Velocity measurements made with a laser Dopplermeter on the turbulent pipe flow of a dilute polymer solution. J. Fluid Mech. 51, 673.

    Article  ADS  Google Scholar 

  • Ryskin, G. 1987a Turbulent drag reduction by polymers: A quantitative theory. Phys. Rev. Lett. 59, 2059.

    Article  ADS  Google Scholar 

  • Ryskin, G. 1987b Calculation of the effect of polymer additive in a converging flow. J. Fluid Mech. 178, 423.

    Article  ADS  Google Scholar 

  • Seyer, F.A. & Metzner, A.B. 1969 Turbulence phenomena in drag reducing solutions. AIChE J. 15, 427.

    Article  Google Scholar 

  • Smith, K.A., Merrill, E.W., Mickley, H.S. & Virk, P.S. 1967 Anomalous pitot tube and hot film measurements in dilute polymer solutions. Chem. Engg. Sci. 22, 619.

    Article  Google Scholar 

  • Spangler, J.G. 1969 Studies of viscous drag reduction with polymers including turbulence measurements and roughness effects. in: C.S. Wells (editor), Viscous Drag Reduction, Plenum Press, New York., 131.

    Google Scholar 

  • Sun, Z. & Denn, M.M. 1972 Stability of rotational Couette flow of polymer solutions. AIChE J. 18, 1010.

    Article  Google Scholar 

  • Tanner, R.I. 1985 Engineering Rheology. Oxford University, New York. 451 p.

    MATH  Google Scholar 

  • Taylor, G.I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. London A 223, 289.

    Article  MATH  ADS  Google Scholar 

  • Tiederman, W.G., Luchik, T.S. & Bogard, D.G. 1985 Wall-layer structure and drag reduction. J. Fluid Mech. 156, 419.

    Article  ADS  Google Scholar 

  • Ting, R.Y. & Hunston, D.L. 1977 Polymeric additives as flow regulators. Ind. Eng. Chem. Prod. Res. Dev. 16, 129.

    Article  Google Scholar 

  • Tornita, Y. 1970 Pipe flows of dilute aqueous polymer solutions. Bull. JSME 13, 926.

    Article  Google Scholar 

  • Toms, B.A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proc. 1st Intl. Congr. Rheol. 2, 135.

    Google Scholar 

  • Usui, H. & Sano, Y. 1981 Elongational flow of dilute drag reducing fluids in a falling jet. Phys. Fluids 24, 214.

    Article  ADS  Google Scholar 

  • Virk, P.S. 1975 Drag reduction fundamentals. AIChE J. 21, 625.

    Article  Google Scholar 

  • Virk, P.S., Merrill, E.W., Mickley, H.S., Smith, K.A. & Mollo-Christensen, E.L. 1967 The Toms phenomenon: Turbulent pipe flow of dilute polymer solutions. J. Fluid Mech. 30, 305.

    Article  ADS  Google Scholar 

  • Virk, P.S., Mickley, H.S. & Smith, K.A. 1970 The ultimate asymptote and mean flow structure in Toms phenomenon. Trans. ASME: J. Appl. Mech. 37, 488.

    Article  ADS  Google Scholar 

  • Weinberger, C.B. & Goddard, J.D. 1974 Extensional flow behavior of polymer solutions and particle suspensions in a spinning motion. Intl. J. Multiphase Flow, 1, 465.

    Article  Google Scholar 

  • Wells, C.S. 1965 Anomalous flow of non-Newtonian fluids. AIAA J. 3, 1800.

    Article  Google Scholar 

  • Wells, C.S., Harkness, J. & Meyer, W.A. 1968 Turbulence measurements in pipe flow of a drag-reducing non-Newtonian flow. AIAA J. 6, 250.

    Article  ADS  Google Scholar 

  • Wells, C.S. & Spangler, J.G. 1967 Injection of a drag-reducing fluid into turbulent pipe flow of Newtonian fluid. Phys. Fluids 10, 1890.

    Article  ADS  Google Scholar 

  • Wiest, J.M. & Bird, R.B. 1988 On coil-stretch transitions in dilute polymer solutions. University of Wisconsin-Madison, Rheology Research Center Rep. 116.

    Google Scholar 

  • Willmarth, W.W., Wei, T. & Lee, C.O. 1987 Laser anemometer measurements of Reynolds stress in a turbulent channel flow with drag reducing polymer additives. Phys. Fluids 30, 933.

    Article  ADS  Google Scholar 

  • Wolff, C. 1980 On the real molecular weight of polyethylene oxide of high molecular weight in water. Can. J. Chem. Eng. 58, 634–636.

    Article  Google Scholar 

  • Wu, J. & Tulin, M.P. 1972 Drag reduction by ejection of additive solutions into pure-water boundary layer. Trans. ASME: J. Basic Engg. 94, 749.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Hendricks, E.W., Lawler, J.V., Horne, M.P., Handler, R.A., Swearingen, J.D. (1989). Experiments in Drag-Reducing Polymer Flows. In: Gad-el-Hak, M. (eds) Advances in Fluid Mechanics Measurements. Lecture Notes in Engineering, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83787-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83787-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51136-6

  • Online ISBN: 978-3-642-83787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics