Advertisement

Clays, Zeolites and Other Microporous Solids for Organic Synthesis

  • John M. Thomas
  • Charis R. Theocharis
Part of the Modern Synthetic Methods book series (MOD.SYNTH., volume 5)

Abstract

Enormous numbers of distinct structural types are possible using the SiO4 tetrahedron as a building block. The mineral kingdom contains many more structures derived from SiO4 than any other unit. In its pure crystalline state at atmospheric pressure silica, SiO2, exists in three forms as follows: the first form is quartz which at 1143K transforms to tridymite, which itself transforms to cristobalite at 1743K. This finally melts, at 1983K. In the glassy form, silica occurs in nature as obsidian. Each of the three crystalline forms exists in a low- and high- temperature modification, designated as α and β

Keywords

Acid Site Lewis Acid Site Strong Acid Site Pillared Clay Bifunctional Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    J.M. Thomas, in (Eds. M.S. Whittingham and A.J. Jacobson) “Intercalation Chemistry”, (1982), 55Google Scholar
  2. 2).
    A. Weiss, Angew. Chem. Intl. Ed. Engl., 20, (1981), 850CrossRefGoogle Scholar
  3. 3).
    C.A. Fyfe, J.M. Thomas and J.R. Lyerla, Angew. Chem. Intl. Ed. Engl., 20, (1981), 96CrossRefGoogle Scholar
  4. 4).
    K.H.W. Robschilager, C.A. Emeis and R.A. vanSanten, J. Catal, 92 (1984), 1CrossRefGoogle Scholar
  5. 5).
    J.H. Purnell, J.M. Thomas, P.A. Diddams, J.A. Ballantine and W. Jones, Catal. Lett., In the PressGoogle Scholar
  6. 6).
    D.E.W. Vaughan, Chem. Eng. Progr., (1988), 25Google Scholar
  7. 7).
    J.M. Thomas and G.R. Millward, J. Chem. Soc. Chem. Comm., (1982), 1380Google Scholar
  8. 8).
    J.M. Thomas, Angew. Chem. 100 (1988), 1735CrossRefGoogle Scholar
  9. 9).
    Y. Morikawa, F. Wng, H. Kurokawa, W. Ueda and T. Ikawa, Proc. 9th Intl Congr. On Catalysis, Calgary (1987)Google Scholar
  10. 10).
    G.C. Bond, “Heterogeneous Catalysis”, Oxford University Press (1987)Google Scholar
  11. 11).
    P.B. Weisz, Chem. Tech., (1973), 498Google Scholar
  12. 12).
    W.O. Haag and R.M. Dessau, in (Ed. G. Ertl), “Proc. 8th Intl. Congr. Catalysis, Berlin”, Vol. II, 305Google Scholar
  13. 13).
    P.B. Weisz and V.J. Frilette, J. Phys. Chem., 64, (1960), 382CrossRefGoogle Scholar
  14. 14).
    S.M. Csicsery, Zeolites, 4, (1984), 202CrossRefGoogle Scholar
  15. 15).
    E.G. Derouane, in (Ed. M.S. Whittingham and A.J. Jacobson), “Intercalation Chemistry”, (1982), 101Google Scholar
  16. 16).
    F. Figueras, Catal. Rev. Sci & Eng., 30, (1988), 457CrossRefGoogle Scholar
  17. 17).
    E. Kikuchi, T. Matsuda, J. Ueda and Y. Morita, Appl. Catal., 16, (1985), 401CrossRefGoogle Scholar
  18. 18).
    E. Kikuchi and T. Matsuda, Catal. Today, 2, (1988), 297CrossRefGoogle Scholar
  19. 19).
    P. Cartraud, A. Cointot, M. Dufour, N. Gnep, M. Guisnet, G. Joly and J. Tejada, Appl. Catal., 21, (1986), 85CrossRefGoogle Scholar
  20. 20).
    M.B. Sayed and J.C. Védrine, J. Catal., 101, (1986), 43CrossRefGoogle Scholar
  21. 21).
    G.P. Babu, M. Santra, V.P. Shiralkar and P. Ratnasumi, J. Catal., 100, (1986), 458CrossRefGoogle Scholar
  22. 22).
    D.S. Santilli, J. Catal., 99, (1986), 327CrossRefGoogle Scholar
  23. 23).
    J. Abbot, A. Comma and B.W. Wojciechowski, J. Catal, 92, (1985), 398CrossRefGoogle Scholar
  24. 24).
    J. Datka, J. Chem. Soc. Faraday Trans I, 77, (1981), 2633CrossRefGoogle Scholar
  25. 25).
    R.B. Borade, S.G. Hedge, S.B. Kulkarni and P. Ratnasamy, Appl. Catal., 13, (1984), 27CrossRefGoogle Scholar
  26. 26).
    C.P. Bezonhanova, C. Dimitrov, V. Nenova, L. Dimitrov and H. Lechert, Appl. Catal., 19, (1985), 101CrossRefGoogle Scholar
  27. 27).
    F. Alvarez, G. Gianetto, M. Guisnet and G. Perot, Appl. Catal., 19, (1987), 353CrossRefGoogle Scholar
  28. 28).
    M.G. Riley and R.G. Anthony, J. Catal., 100, (1986), 322CrossRefGoogle Scholar
  29. 29).
    A. Comma, J. Planelles, J. Sánchez-Marín and F. Tomás, J. Catal., 93, (1985), 30CrossRefGoogle Scholar
  30. 30).
    M.J. Tricker, D.T.B. Tennakoon, J.M. Thomas and S.H. Graham, Nature, 235, (1975), 110CrossRefGoogle Scholar
  31. 31).
    M.S. Tzou, H.J. Jiang and W.M.H. Sachtler, Appl. Catal., 20, (1986), 231CrossRefGoogle Scholar
  32. 32).
    M. Chow, S.H. Park and W.M.H. Sachtler, Appl. Catal., 19, (1985), 349CrossRefGoogle Scholar
  33. 33).
    C.W.R. Engelen, J.P. Wolthnizen and J.H.C. vanHooff, Appl. Catal., 19, (1985), 153CrossRefGoogle Scholar
  34. 34).
    J.R. Anderson and P. Tsai, Appl. Catal., 19, (1985), 141CrossRefGoogle Scholar
  35. 35).
    H. Kitagawa, Y. Sandoda and Y. Ono, J. Catal., 101, (1986), 12CrossRefGoogle Scholar
  36. 36).
    J.M. Bakke and J. Liasken, Ger. Patent, DP 2, 826, 433 (1979)Google Scholar
  37. 37).
    I.E. Maxwell, in “Advances in Catalysis”, 31, (1982), 1CrossRefGoogle Scholar
  38. 38).
    S.J. Gentry, R. Rudham and M.K. Sandes, J. Catal, 35, (1974), 376CrossRefGoogle Scholar
  39. 39).
    H. Arai, T. Yamashiro, T. Kubo and H. Tominaga, Bull. Jpn. Pet. Inst., 18, (1976), 39CrossRefGoogle Scholar
  40. 40).
    Y. Wada, C. Nakoya and A. Morikawa, Chem. Letts., (1988), 25Google Scholar
  41. 41).
    J.C.Q. Fletcher, M. Kojima and C.T. O’Connor, Appl. Catal., 28, (1986), 181CrossRefGoogle Scholar
  42. 42).
    K.G. Wilshier, P. Smart, R. Western, T. Mole and T. Behrsing, Appl. Catal., 31, (1987), 339CrossRefGoogle Scholar
  43. 43).
    C. Kato, K. Kuroda and H. Takahara, Clays and Clay Miner., 29, (1981), 294CrossRefGoogle Scholar
  44. 44).
    J.M. Adams, S.E. Davies, S.H. Graham and J.M. Thomas, J. Catal., 78, (1982), 197CrossRefGoogle Scholar
  45. 45).
    K. Eguchi, T. Tokiai and H. Arai, Appl. Catal., 34, (1987), 275CrossRefGoogle Scholar
  46. 46).
    R.M. Dessau, J. Catal, 89, (1984), 520CrossRefGoogle Scholar
  47. 47).
    F. Fujula, R. Ibarra, F. Figueras and C. Guegnen, J. Catal, 89, (1984), 60CrossRefGoogle Scholar
  48. 48).
    J.M. Adams, S.H. Graham, P.I. Reid and J.M. Thomas, J. Chem. Soc. Chem. Comm., (1977), 67Google Scholar
  49. 49).
    J.A. Ballantine, M. Davies, J.H. Purnell, M. Rayanakorn, J.M. Thomas and K.J. Williams, J. Chem. Soc. Chem. Comm., (1981), 8Google Scholar
  50. 50).
    J.A. Ballantine, M. Davies, R.M. O’Neil, I. Patel, J.H. Purnell, M. Rayanakorn and K.J. Williams, J. Mol. Catal., 26, (1984), 57CrossRefGoogle Scholar
  51. 51).
    E. Kikuchi and T. Matsuda, Catal. Today., 2, (1988), 297CrossRefGoogle Scholar
  52. 52).
    J.A. Ballantine, in (Ed. R. Setton) “Chemical Reactions in Organic Constrained Systems”, (1986), 197Google Scholar
  53. 53).
    F.J. van der Gaag, F. Louter, J.C. Oudejans and H. van Bekkum, Appl. Catal., 26, (1986), 191CrossRefGoogle Scholar
  54. 54).
    L.V. Malysheva, E.A. Paukshtis and N.S. Kotsarenko, J. Catal., 104, (1987), 31CrossRefGoogle Scholar
  55. 55).
    J.A. Ballantine, J.H. Purnell, M. Rayanakorn, K.J. Williams and J.M. Thomas, J. Mol. Catal., 30, (1985), 373CrossRefGoogle Scholar
  56. 56).
    German Patent, 1, 211, 643 (1966)Google Scholar
  57. 57).
    J.A. Ballantine, M. Davies, I. Patel, J.H. Purnell, M. Raynakorn, K.J. Williams and J.M. Thomas, J. Mol. Catal., 26, (1984) 37CrossRefGoogle Scholar
  58. 58).
    US Patent 3, 693, 579 (1976)Google Scholar
  59. 59).
    E. Suzuki, S. Idemura and Y. Ono, Chem. Letts., (1987), 1843Google Scholar
  60. 60).
    S. Namba, K. Yamagishi and T. Yashima, Chem. Letts., (1987), 1109Google Scholar
  61. 61).
    S.J. DeCanio, J.R. Sohn, P.O. Frirz and J.H. Lansford, J. Catal., 101, (1986), 132CrossRefGoogle Scholar
  62. 62).
    S. Fukase and B.W. Wojciechowski, J. Catal., 102, (1986), 452CrossRefGoogle Scholar
  63. 63).
    C. Bezonhanova, C. Dimitrov, V. Nenova, B. Spassov and H. Lechert, Appl. Catal., 21, (1986), 149CrossRefGoogle Scholar
  64. 64).
    H. Sakurai, K. Urabe and Y. Izumi, J. Chem. Soc. Chem. Comm. (1988), 1519Google Scholar
  65. 65).
    K. Urabe, H. Sakurai and Y. Izumi, J. Chem. Soc. Chem. Comm., (1988), 1520Google Scholar
  66. 66).
    P. Beltrame, P.L. Beltrame, P. Carniti, A. Castelli and L. Forni, Appl. Catal., 29, (1987), 327CrossRefGoogle Scholar
  67. 67).
    R. Burch and C.I. Warburton, J. Catal., 97, (1986), 511CrossRefGoogle Scholar
  68. 68).
    R. Burch and C.I. Warburton, J. Catal., 97, (1986), 503CrossRefGoogle Scholar
  69. 69).
    E. Santacesaria, D. Gelosa, E. Giorgi and S. Carrà, J. Catal., 90, (1984), 1CrossRefGoogle Scholar
  70. 70).
    C.R. Theocharis, K.J. s’Jacob and A.C. Gray, J. Chem. Soc. Faraday Trans I, 84, (1988), 1509CrossRefGoogle Scholar
  71. 71).
    S. Tsuruya, M. Tsakamoto, M. Watanabe and M. Masai, J. Catal., 93, (1985), 303CrossRefGoogle Scholar
  72. 72).
    S.T. Wilson, B.M. Lok and E.M. Flanigen, US Pat. (1982), 4, 310, 440Google Scholar
  73. 73).
    M.R. Gelsthorpe and C.R. Theocharis, Catalysis Today, 2, (1988), 613CrossRefGoogle Scholar
  74. 74).
    G. Perego, G. Bellusi, C. Corno, M. Taramasso, F. Bounomo and A. Esposito, in (Ed. K. Murakami et al) ‘New Developments in Zeolite Science and Technology’, (1986), 129Google Scholar
  75. 75).
    P. Laszlo, (Ed.) ‘Preperative Chemistry Using Supported Reagents’ Academic Press, San Diego, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • John M. Thomas
    • 1
  • Charis R. Theocharis
    • 2
  1. 1.Davy Faraday Research LaboratoryThe Royal Institution of Great BritainLondonUK
  2. 2.Department of Chemistry, BrunelThe University of West LondonUxbridge, MiddlesexUK

Personalised recommendations