Advertisement

High Degeneracy of HLA DR-Peptide Interactions: Possible Ramifications for Vaccine Design

  • J. B. Rothbard
  • C. M. Hill
  • J. Hickling
  • R. Busch
Conference paper

Abstract

The demonstration that both MHC class I and class II molecules bind fragments of protein antigens (Babbitt 1985, Buus 1986, Watts and McConnell 1986) and that the formation of MHC-peptide complexes is a necessary requirement for T cell recognition (Schwartz 1985) has led to the postulate that the differential capacity of each allele to bind peptides is the molecular basis of genetic differences in immune responsiveness (Guillet 1987, Buus 1987). The results of the binding studies supported experiments demonstrating that the specificity of the cellular immune response to an immunogen varies between different strains of mice. Consequently, any peptide based vaccine must be composed of a suffiently large cocktail of peptides to be widely effective. However, these conclusions were based principally on the binding studies using purified murine class II MHC molecules and consequently only a limited number of alleles were examined.

Keywords

Fluorescent Signal Peptide Binding Cell Determinant Natural Determinant Murine Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accolla RS (1983) J Exp Med 157:1053–1058.PubMedCrossRefGoogle Scholar
  2. Babbitt BP, Allen PM, Matsueda, G, Haber, E & Unanue, ER (1985) Nature 317, 359–361.PubMedCrossRefGoogle Scholar
  3. Buus, S, Sette, A, Colon, S, Miles, C & Grey, H (1987) Science 235, 1353–1358.PubMedCrossRefGoogle Scholar
  4. Buus, S., Sette, A., Colon, S. M., Jenis, D. M. & Grey, H. M. (1986) Cell 47, 1071–1077.PubMedCrossRefGoogle Scholar
  5. Ceppellini R, Frumento G, Ferrara, G, Tosi, R, Chersi, A & Pernis, B (1989) Nature 339, 392–394.PubMedCrossRefGoogle Scholar
  6. Guillet, J, Lai, M, Briner, T, Buus, S, Sette, A, Grey, H, Smith, J, Gefter, M (1987) Science 235, 865–870.PubMedCrossRefGoogle Scholar
  7. Hume, C, Accolla, R, and Lee, J (1987) Proc Natl Acad Sci U.S.A. 84, 8603–8607.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Lamb, J, Rees, A, Bai, V, Ikeda, H, Wilkinson, D, De Vries, R R P & Rothbard, JB (1988) Eur.J. Immunol. 18, 973–976.PubMedCrossRefGoogle Scholar
  9. Lampson, L & Levy, R (1980) J Immunol 125, 293–299.PubMedGoogle Scholar
  10. McCormick, D & Roth, J (1970) Anal Biochem34, 226–236.PubMedCrossRefGoogle Scholar
  11. Rothbard, J, Lechler, R, Howland, K, Bai, V, Eckels, D, Sekaly, R, Long, E, Taylor, W & Lamb, J (1988) Cell 52, 515–523.PubMedCrossRefGoogle Scholar
  12. Schwartz, RH (1985) Ann. Rev. Immunol. 3, 237–261.CrossRefGoogle Scholar
  13. Sinigaglia, F, Guttinger, M, Kilgus, J, Doran, D, Matile, H, Etlinger, H, Trzeciak, A, Gillessen, D &Pink, J (1988) Nature 336, 778–780.PubMedCrossRefGoogle Scholar
  14. Watts, T & McConnell, H (1986) Proc Natl Acad Sci, U.S.A., 83, 9660–9664.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. B. Rothbard
  • C. M. Hill
  • J. Hickling
  • R. Busch

There are no affiliations available

Personalised recommendations